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Abstract

The aim of this paper is three-fold: (i) we construct a natural highly homotopy coherent operad
structure on the derivatives of the identity functor on structured ring spectra which can be
described as algebras over an operad O in spectra, (ii) we prove that every connected O-algebra
has a naturally occurring left action of the derivatives of the identity, and (iii) we show that
there is a naturally occurring weak equivalence of highly homotopy coherent operads between
the derivatives of the identity on O-algebras and the operad O.
Along the way, we introduce the notion of N-colored operads with levels which, by construc-
tion, provides a precise algebraic framework for working with and comparing highly homotopy
coherent operads, operads, and their algebras.
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1 Introduction

A slogan of functor calculus widely expected to hold is that the symmetric sequence of Goodwillie
derivatives of the identity functor on a suitable model category C, denoted ∂∗IdC, ought to come
equipped with a natural operad structure. A result of this type was first proved by Ching in [15]
for C = Top∗ and more recently in the setting of ∞-categories in [18]. In this paper, we construct
an explicit “highly homotopy coherent” operad structure for the derivatives of the identity functor
in the category of algebras over a reduced operad O in spectra.

The derivatives of the identity in AlgO have previously been studied ([49], [40]) and it is known
that O[n] is a model for ∂nIdAlgO – the n-th Goodwillie derivative of IdAlgO . It is further conjectured
(see, e.g., Arone-Ching [1]) that ∂∗IdAlgO and O be equivalent as operads: a main difficulty of which
is describing an intrinsic operad structure on the derivatives of the identity which may be compared
with that of the operad O. Our main theorem addresses this conjecture.

Theorem 1.1. Let O be an operad in spectra such that O[n] is (−1)-connected for n ≥ 1 and
O[0] = ∗. Then,

(a) The derivatives of the identity in AlgO can be equipped with a natural highly homotopy
coherent operad structure

(b) Moreover, with respect to this structure, ∂∗IdAlgO is equivalent to O as highly homotopy
coherent operads.
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The proofs of parts (a) and (b) to Theorem 1.1 may be found in Sections 8.1 and 8.2, respectively.
Our technique is to avoid working with the identity directly by replacing it with the Bousfield-Kan
cosimplicial resolution provided by the stabilization adjunction (Q,U) for O-algebras. The strong
cartesianness estimates of Blomquist [10] (see also Ching-Harper [19]) allow us to then express
∂∗IdAlgO as the homotopy limit of the cosimplicial diagram (showing only coface maps)

∂∗(QU)•+1 =
(
∂∗(UQ) // // ∂∗(UQ)2

// //
//
∂∗(UQ)3 · · ·

)
(1.1)

whose terms ∂∗(QU)k+1 may be readily computed by an O-algebra analogue of the Snaith splitting.
We thus obtain a natural cosimplicial resolution C(O) of the derivatives of the identity such that
∂∗IdAlgO ' holim∆ C(O) which furthermore may be identified as the TQ resolution of O as a left
O-module. Our approach is influenced by the work of Arone-Kankaanrinta [4] wherein they use
the cosimplicial resolution offered by the stabilization adjunction between spaces and spectra to
analyze the derivatives of the identity in spaces via the classic Snaith splitting.

We induce a highly homotopy coherent operad structure (i.e., A∞-operad) on ∂∗IdAlgO by
constructing a pairing of the resolution C(O) with respect to the box product � for cosimplicial
objects (see Batanin [6]). Thus, we extend to the monoidal category of symmetric sequences a
technique utilized in McClure-Smith [48]: specifically, that if X is a �-monoid in cosimplicial
spaces or spectra then Tot(X) is an A∞-monoid (with respect to the closed, symmetric monoidal
product for spaces or spectra).

There are some subtleties that arise in that (i) the box product is not as well-behaved when work-
ing with the composition product ◦ of symmetric sequences, and (ii) the extra structure encoded
by ◦ leads us to work with N-colored operads to express A∞-monoids with respect to composi-
tion product. As such, one of the main developments of this paper is that of N-colored operads
with levels (i.e., Nlev-operads) as useful bookkeeping tools designed to algebraically encode operads
(i.e., strict composition product monoids) and “fattened-up” operads as their algebras. Within this
framework of Nlev-operads we can also describe algebras over an A∞-operad.

1.1 Remark on Theorem 1.1

In the statement of Theorem 1.1 the phrase “naturally occuring” means that we refrain from
endowing ∂∗IdAlgO with the operad structure from O directly. Rather, we produce a method for
intrinsically describing operadic structure possessed by the derivatives of the identity that should
carry over to other model categories suitable for functor calculus. In particular, the constructions
of such an operad structure on the derivatives of the identity should:

(i) Recover the (A∞-) operad structure endowed on ∂∗IdTop∗ described by Ching in [15]

(ii) Endow the derivatives of an arbitrary homotopy functor F : AlgO → AlgO′ with a natural
bimodule structure over (∂∗IdAlgO′ , ∂∗IdAlgO ) suitable for describing a chain rule (as in Arone-
Ching [1])

(iii) Be fundamental enough to describe an operad structure on ∂∗IdC and chain rule for a suitable
model category C (e.g., one in which one can do functor calculus).

1.2 Future applications

The three facets outlined above are all matters of ongoing work and will not be pursued in this
document. We note however that our constructions are anticipated to underlie a “highly homotopy
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coherent chain rule” for composable functors F,G of structured ring spectra. That is, a comparison
map ∂∗F ◦ ∂∗G → ∂∗(FG) which, under the identification of ∂∗IdAlgO ' O, prescribes a suitably
coherent (O′,O)-bimodule structure on the derivatives of an arbitrary functor F : AlgO → AlgO′ .
Such a result would extend work of Arone-Ching [1] (see also Klein-Rognes [39], Ching [16], and
Yeakel [54]) to categories of structured ring spectra and lend to a more robust analysis of functors
thereof.

Item (iii) above is perhaps the most lofty and also the most tempting. We are interested in
utilizing our techniques to endow ∂∗IdC with a naturally occurring operad structure for a suitable
model category C. One application of such a result would be in providing homotopy descent data in
the form of an equivalence of categories between (a suitable subcategory of) C and algebras over the
operad ∂∗IdC (see Hess [37], Behrens-Rezk [8], and Francis-Gaitsgory [29]). Such an extension of
our work seems to rely crucially on the existence of Snaith splittings associated to the stabalization
adjunction (Σ∞C ,Ω

∞
C ) between C and Spt(C) in order to provide a cosimplicial model ∂∗IdC. Such a

splitting is necessarily a statement about the Taylor tower of the associated comonad KC = Σ∞C Ω∞C
and the properties of its derivatives. If Spt(C) ' Spt then Arone-Ching provide a model for the
derivatives of KC in [1] and Lurie outlines a model for ∂∗KC as an ∞-cooperad in [44, §5.2 and §6].
A more rigid description for the cooperad structure in general is the subject of ongoing work and
will not be further pursued in this paper.

1.3 Outline of the argument

Our main tool is to utilize the Bousfield-Kan cosimplicial resolution of an O-algebra X with respect
to the TQ-homology adjunction

AlgO
Q //

AlgJ ' ModO[1].
U
oo

Here, J denotes a suitable replacement of τ1O, the truncation of O above level 1 (see Section 2.8).
Of important note is that the pair (Q,U) is equivalent to the stabilization adjunction for O-algebras
(see Section 2.8) and that AlgJ and ModO[1] are Quillen equivalent.

Using the strong connectivity estimates offered by Blomquist’s higher stabilization theorems [10,
§7], we first show that ∂∗IdAlgO is equivalent to holim∆ ∂∗(UQ)•+1 (see (1.1)). Similarly to Arone-
Kankaanrinta [4], in which they compute the n-excisive approximations (resp. n-th derivatives)
of the identity functor on Top∗ in terms of the n-excisive approximations (resp. n-th derivatives)
of iterates of stabilization Ω∞Σ∞ by means of the Snaith splitting, we then analyze the terms
∂∗(UQ)k+1 via an analog of the Snaith splitting in AlgO.

Essentially a statement about the Taylor tower of the associated comonad QU , the Snaith
splitting in AlgO permits equivalences of symmetric sequences

∂∗(QU) ' |Bar(J,O, J)| ' J ◦hO J =: B(O)

as (J, J)-bimodules (here, ◦h denotes the derived composition product). By iterated applications
of the splitting, we may compute

∂∗(UQ)k+1 ' B(O) ◦J · · · ◦J B(O)︸ ︷︷ ︸
k

' J ◦O · · · ◦O J︸ ︷︷ ︸
k+1

= C(O)k
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and moreover that ∂∗(UQ)•+1 ' C(O) as cosimplicial symmetric sequences. Here, C(O) is given
by

J //// J ◦O J ////
//
J ◦O J ◦O J // //

//// J ◦O J ◦O J ◦O J · · ·

with coface map di induced by inserting O → J at the i-th position (see Remark 4.5 along with
(2.6)).

Note, B(O) is (at least up to homotopy) a cooperad with a coaugmentation map J → B(O),
and our C(O) is essentially a rigid cosimplicial model for the cobar construction on B(O). In
particular, this allows us to bypass referencing any particular model for the comultiplication on
B(O) (e.g., that of Ching [15], see also Section 4.3).

We construct a pairing m : C(O)�C(O) → C(O) with respect to the box product (Definition
5.1) of cosimplicial symmetric sequences via compatible maps of the form (induced by the operad
structure maps J ◦ J → J)

mp,q : J ◦O · · · ◦O (J︸ ︷︷ ︸
p+1

◦ J) ◦O · · · ◦O J︸ ︷︷ ︸
q+1

→ J ◦O · · · ◦O J ◦O · · · ◦O J︸ ︷︷ ︸
p+q+1

along with a unit map u : I → C(O), where I denotes the constant cosimplicial symmetric sequence
on I. Our argument is then to induce an A∞-monoidal pairing on ∂∗IdAlgO — modeled as TotC(O)
— via m and u (compare with McClure-Smith [48]).

One difficulty which arises is that the composition product of symmetric sequences is not as
well-behaved of a product as, say, cartesian product of spaces or smash product of spectra. Thus,
we do not obtain m as a strictly monoidal pairing on the level of cosimplicial diagrams. In resolving
this issue we introduce a specialized category of N-colored operads with levels (i.e., Nlev-operads)
designed specifically to overcome these technical subtleties of the composition product. As a result,
a large portion of this document is dedicated to carefully developing the framework of Nlev-operads
and their algebras.

With these details in tow it is then possible to produce an A∞-operad structure on ∂∗IdAlgO . Let
Tot denote restricted totalization Totres (see Section 2.5), we then obtain an A∞-monoidal pairing

TotC(O) ◦ TotC(O)→ TotC(O)

described as an algebra over a certain Nlev-operad which is a naturally “fattened-up” replacement
of the Nlev-operad whose algebras are strict operads (see Definition 7.1 along with Propositions
7.3 and 7.10). Moreover, the coaugmentation O → C(O) provides a comparison between O and
∂∗IdAlgO which we show yields an equivalence of A∞-operads, thus resolving the aforementioned
conjecture.

Remark 1.2. It is worth noting that Ching [18] has recently proved a similar result in the context
of ∞-categories using the Day convolution. The author expects a comparison should be possible
between the arguments presented in this document and those due to Ching, but is not aware of any
explicit description at present.

1.4 Organization of paper

Section 2 provides an overview of the relevant details of working with O-algebras and their TQ-
completions. In sections 3 and 4 we provide an overview of the calculus of homotopy functors
between categories of operadic algebras and describe the particular model for the derivatives of the
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identity that we employ. Section 5 is devoted to the box-product of cosimplicial objects. Much of
the technical bulk of our paper occurs in the last three sections: Section 6 provides the framework
for describing our notion of (symmetric) N-colored operads with levels. Section 7 provides proofs
regarding of Nlev-operads of interest and Section 8 contains the proofs of our main theorems on the
derivatives of the identity.
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2 Operads of spectra and their algebras

We work in the category algebras over a reduced operad in a closed, symmetric monoidal category
of spectra (Spt,∧, S). For convenience we will use the category of S-modules as in Elmendorf-Kriz-
Mandell-May [28] and refer to such objects as spectra. The main technical benefit of working with
S-modules is that all spectra will be fibrant (and thus TotX of a levelwise fibrant diagram will
already correctly model holim∆ X ), though we note that similar results should hold in the category
of symmetric spectra by utilizing suitable fibrant replacement monads.

We observe that Spt is a cofibrantly generated, closed symmetric monoidal model category (see,
e.g., [1, Definition 1.12]) and write MapSpt(X,Y ) for the internal mapping object of Spt. When
it is clear from context we write Map for MapSpt. We let Top denote the category of compactly
generated Hausdorff spaces. In [28], it is shown that Spt admits a tensoring of Top∗ which may be
extended to Top by first adding a disjoint basepoint. In particular for K ∈ Top, X,Y ∈ Spt there
are natural isomorphisms

hom(K+ ∧X,Y ) ∼= hom(X,MapSpt(K+, Y )).

Though we will not make explicit use of it, we define a simplicial tensoring of Spt via K ∧ X :=
|K| ∧X for K ∈ sSet∗ and X ∈ Spt.

2.1 Symmetric sequences

Let (C,⊗,1) be a closed symmetric monoidal category and write MapC for the mapping object in
C. When C is clear from context we write Map for MapC. We will require that C be cocomplete,
and write ??? for the initial object of C; particular categories of interest are Spt and Top∗.

Recall that a symmetric sequence in C is a collection X[n] ∈ C for n ≥ 0 such that X[n]
admits a (right) action by Σn. We let SymSeqC denote the category of symmetric sequences in C
and action preserving morphisms. A symmetric sequence X is reduced if X[0] = ??? (some authors
require in addition that X[1] ∼= 1, however we omit this condition). When C is clear from context
we will simply write SymSeq. Note that SymSeq comes equipped with a monoidal product ◦, the
composition product (also called circle product) defined as follows (see also [50] or [34]).
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2.2 The composition product of symmetric sequences

For X,Y ∈ SymSeq we define X ◦ Y at level k by

(X◦Y )[k] =
∐
n≥0

X[n]⊗Σn Y
⊗̌n[k]. (2.1)

Here, ⊗̌ denotes the tensor of the symmetric sequences (e.g., as in [34]). For n, k ≥ 0, Y ⊗̌n[k] is
computed as ∐

k
π−→n

Y [π1]⊗ · · ·⊗Y [πn] ∼=
∐

k1+···+kn=k

Σk ·Σk1
×···×Σkn

Y [k1]⊗ · · ·⊗Y [kn]

where π runs over all surjections k = {1, . . . , n} → {1, . . . , n} = n and we set πi := |π−1(i)| for
i ∈ n. The composition product admits a unit I given by I[1] = 1 and I[k] = ??? otherwise.

For our purposes, we find it convenient to work with with a slightly modified version of the
composition product for reduced symmetric sequences. Let X,Y ∈ SymSeq be reduced. Let
(k1, . . . , kn) denote a sequence of integers k1, . . . , kn ≥ 1 (allowing for repetition of entries) and set
Sumk

n to be the collection of orbits (k1, . . . , kn)Σn such that
∑n
i=1 ki = k.

Definition 2.1. Given k1, . . . , kn ≥ 1 we defineH(k1, . . . , kn) as the collection of block permutation
matrices Σk1

× · · · ×Σkn ≤ Σk, along with the Σpi permutations of those blocks such that kj = di.

Remark 2.2. We observe that orbits (k1, . . . , kn)Σn are in bijective correspondence to partitions
k = d1p1 + · · · + dmpm where 1 ≤ d1 < · · · < dm and pi ≥ 1. Given an orbit (k1, . . . , kn)Σn let
1 ≤ d1 ≤ · · · dm be the distinct entries of multiplicity pi. We note that there is an isomorphism
(here, Σonm denotes the wreath product Σm o Σn := Σ×nm o Σn)

H(k1, . . . , kn) ∼= Σop1

d1
× · · · × Σopmdm .

Moreover H(k1, . . . , kn) admits a natural Σn action by permutation of elements ki and the
induced map H(k1, . . . , kn)→ H(kσ(1), . . . , kσ(n)) is an isomorphism for all σ ∈ Σn.

Though we will not need this fact, we remark that H(k1, . . . , kn) may be identified with the
stabilizer of the Σk action on partitions of {1, . . . , k} into sets of size k1, . . . , kn (see, e.g., [16,
§1.12]).

For k ≥ 0 we set Σ[k] :=
∐
σ∈Σk

1.

Remark 2.3. The composition product X ◦ Y may be equivalently written as

(X◦Y )[k] ∼=
∐
n≥0

∐
(k1,...,kn)Σn∈Sumkn

Σ[k]⊗H(k1,...,kn) X[n]⊗ Y [k1]⊗ · · · ⊗ Y [kn]. (2.2)

Here, the action of H(k1, . . . , kn) on Σ[k] is induced by that on Σk and the action on X[n]⊗Y [k1]⊗
· · · ⊗ Y [kn] is given as follows (see also Ching [16, 1.13])

• Σp1
× · · · × Σpm ≤ Σn acts on X[n]
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• for i = 1, . . . ,m, Σopidi acts on the factors Y [kj ] such that kj = di by

(i) permuting the pi factors Y [di]

(ii) acting by corresponding Σdi factor on each Y [di].

We also make the following definition for the nonsymmetric composition product X ◦̂Y (note
that our definition differs from [35])

(X ◦̂Y )[k] :=
∐
n≥0

∐
(k1,...,kn)Σn∈Sumkn

X[n]⊗ Y [k1]⊗ · · · ⊗ Y [kn]. (2.3)

Note that ◦̂ is not associative, our primary use for ◦̂ will be as a bookkeeping tool for indexing
the factors involved in expanding iterates of ◦ from the left (as in Section 6).

2.3 Operads as monads

A reduced operad in C is a symmetric sequence O which is a monoid with respect to ◦, i.e., there are
maps O◦O → O and I → O which satisfy additional associativity and unitality relations (see, e.g.,
Rezk [50]). We will only consider reduced operads, and interpret operad to mean reduced operad.

Any symmetric sequence M gives rise to a functor M ◦(−) on C given as follows (note X⊗0 = 1)

X 7→M ◦ (X) =
∨
n≥0

M [n]⊗Σn X
⊗n.

If O is an operad, then the associated functor O ◦ (−) is a monad on C which we will frequently
conflate with the operad O. We let AlgCO denote the category of algebras for the monad associated
to an operad O in C.

When C = Spt and O is an operad of spectra, then AlgO = AlgSptO is a pointed simplicial model
category (see, e.g., [20, §7]) when endowed with projective model structure from Spt. For a further
overview of notation and terminology we refer the reader to [34, §3] or [50, §2].

2.4 Assumptions on O
From now on in this document we assume that O is a reduced operad in Spt which obeys some mild
cofibrancy conditions that are satisfied if, e.g., O arises via the suspension spectra of a cofibrant
operad in spaces. In particular, we require that the underlying symmetric sequence of O[n] be
Σ-cofibrant (see, e.g., [1, §9]) and that the terms O[n] be (−1)-connected for all n ≥ 1.

2.5 Use of restricted totalization

We systematically interpret Tot of a cosimplicial diagram to mean restricted totalization (see also
[20, §8])

Tot := Totres ∼= MapSpt
∆res (∆•,−) :=

(
MapSpt(∆•,−)

)∆res

.

Here, ∆ denote the usual simplicial category of finite totally-ordered sets [n] := {0 < 1 < · · · < n}
and order preserving maps, ∆res ⊂ ∆ is the subcategory obtained by omitting degeneracy maps,
and ∆• denotes the usual cosimplicial space of topological n-simplices. For convenience, if C• is
cosimplicial object, we will write TotC• instead of the more technically correct Tot(C•|∆res).
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Diagrams shaped on ∆res are referred to as restricted cosimplicial diagrams. Importantly the
inclusion ∆res →∆ is homotopy left cofinal1 and so if C• is a cosimplicial diagram in AlgO which
is levelwise fibrant (as opposed to the stronger condition of Reedy fibrancy), there are equivalences

holim∆ C• ' holim∆res C• ' TotC•.

2.6 Truncations of O
For n ≥ 0 we define τn : SymSeq→ SymSeq to be the n-th truncation functor given at a symmetric
sequence M by

(τnM)[k] =

{
M [k] k ≤ n
∗ k > n

with natural transformations τn → τn−1. We let in be the fiber of τn → τn−1, i.e., inM [k] = ∗ for
k 6= n and inM [n] = M [n] in which case we say inM is concentrated at level n.

For M = O the truncations τnO assemble into a tower of (O,O)-bimodules which receives a
map from O of the form

O → · · · → τ3O → τ2O → τ1O. (2.4)

The tower (2.4) is well studied and plays a central role in examining the homotopy completion of
a structured ring spectrum as in [36]. Note as well that O → τ1O is a map of operads and there is
a well-defined composite τ1O → O → τ1O which factors the identity on τ1O.

2.7 Change of operad adjunction

Associated to a map f : O → O′ of operads there is a Quillen adjunction of the form (see, e.g., [50])

AlgO
f∗ //

AlgO′
f∗
oo

in which the left adjoint f∗ is given by the (reflective) coequalizer

f∗(X) := O′ ◦O (X) = colim
(
O′ ◦ O ◦ (X)

//// O′ ◦ (X)
)

and the right adjoint f∗ is the forgetful functor along f . If f is a levelwise equivalence then the
above adjunction is a Quillen equivalence and furthermore the left derived functor Lf∗ may be
calculated via a simplicial bar construction as follows (see, e.g., [34])

Lf∗(X) := O′ ◦hO (X) ' |Bar(O′,O, Xc)|.

2.8 Stabilization of O-algebras

In order to have a well-defined calculus of functors on AlgO it is necessary to understand the
stabilization of the category of such algebras. Note that AlgO is tensored over simplicial sets (see,
e.g., [20, §7]) and thus one can define Sp(AlgO), the category of Bousfield-Friendlander spectra of
O-algebras, which is Quillen equivalent to the category of left O[1]-modules, ModO[1] (see, e.g., [5]
or [49, §2]).

1The main property we are interested in here is that such functors induce equivalences on homotopy limits.
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The stabilization map for O-algebras is thus equivalent to the left adjoint of (2.7) with respect
to the map of operads O → τ1O, i.e.,

Σ∞AlgOX ' τ1O ◦O (X)

for O-algebras X. By analogy, Ω∞AlgO gives an O[1]-module trivial O-algebra structure above level

2. Moreover, if O[1] ∼= S, then the stabilization of AlgO is equivalent to the underlying category
Spt.

As in [20], we replace τ1O by a “fattened-up” operad J to produce an iterable model for TQ-
homology with the right homotopy type. That is, let J be any factorization

O h−−→ J
g−→ τ1O

in the category of operads, where h is a cofibration and g a weak equivalence. There are then
change of operads adjunctions

AlgO
Q //

AlgJ
U
oo

g∗ //
Algτ1O

g∗
oo ∼= ModO[1] (2.5)

such that (g∗, g
∗) is a Quillen equivalence and, notably, U preserves cofibrant objects (see [36,

5.49]). We refer to the pair (Q,U) as the stabilization adjunction for O-algebras and use AlgJ as
our model for the stabilization of AlgO.

2.9 TQ-homology

The total left derived functor LQ(X) =: TQ(X) is called the TQ-homology spectrum of X and
the composite RU(LQ(X)) is the TQ-homology O-algebra of X. We note that the TQ-homology
spectrum of X may be calculated in the underlying category Spt as

LQ(X) ' |Bar(J,O, Xc)| ' |Bar(τ1O,O, Xc)|.
For simplicity, we will assume the O-algebras we work with are cofibrant by first replacing X by
Xc, where (−)c denotes a functorial cofibrant replacement in AlgO.

2.10 The Bousfield-Kan resolution with respect to TQ

Associated to the stabilization adjunction for O-algebras (Q,U) there is a comonad K := QU on
AlgJ . Given Y a K-coalgebra, we let C(Y ) denote the cosimplicial object Cobar(U,K, Y ).

For X ∈ AlgO, let X → C(X) := C(QX) be the coaugmented cosimplicial object given below

X →
(
UQ(X) //// (UQ)2(X)

// //// (UQ)3(X) · · ·
)

(2.6)

∼=
(
J ◦O (X) //// J ◦O J ◦O (X)

// //// J ◦O J ◦O J ◦O (X) · · ·
)

Coface maps di in (2.6) are induced by inserting O → J at the i-th position, i.e.,

J ◦O · · · ◦O J ∼= J ◦O · · · ◦O O ◦O · · · ◦O J → J ◦O · · · ◦O J ◦O · · · ◦O J
and codegeneracy maps sj are induced by J ◦O J → J ◦J J ∼= J at the j-th position.

Remark 2.4. The totalization of the diagram (2.6) above is called the TQ-completion of an O-
algebra X, defined by

X∧TQ := TotC(X) ' holim∆ C(X).

It is known that X ' X∧TQ for any 0-connected O-algebra X (see, e.g., [19]).
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2.11 Cubical diagrams

Let P(n) denote the poset of subsets of the set {1, . . . , n}. A functor Z : P(n) → C is called an
n-cube in C or also an n-cubical diagram. We use the following notation P0(n) := P(n) \ {∅} and
P1(n) := P(n) \ {{1, . . . , n}} and refer to diagrams shaped on either P0(n) or P1(n) as punctured
n-cubes. The total homotopy fiber of an n-cube Z, denoted tohofibZ, is defined to be the homotopy
fiber of the natural comparison map χ0 : Z(∅) → holimP0(n)Z. If the comparison χ0 is a weak
equivalence (resp. k-connected) we say that Z is homotopy cartesian (resp. k-cartesian).

Dually, the total homotopy cofiber of Z is the homotopy cofiber of χ1 : hocolimP1(n)Z →
Z({1, . . . , n}) which we denote by tohocofibZ. If χ1 is a weak equivalence (resp. k-connected)
we say that Z is homotopy cocartesian (resp. k-cocartesian). We note that the total homotopy
fiber (resp. cofiber) of a cube may be calculated by iterated homotopy fibers (resp. cofibers), see
e.g., [7, 3.2].

Example 2.5 (Coface n-cube). Let Z−1 d0

−→ Z• be a coaugmented cosimplicial object. There
are associated coface n-cubes Zn whose subfaces encode the relation on coface maps (see, e.g.,
Ching-Harper [20, §2.3]). We demonstrate Z2 and Z3 below

Z−1 d0
//

d0

��

Z0

d0

��
Z0 d1

// Z1

Z−1 d0
//

d0

��

d0

""

Z0

d0

!!

d0

��

Z0 d1
//

d1

��

Z1

d1

��

Z0 d1
//

d0

""

Z1

d0

!!
Z1 d2

// Z2

2.12 Higher stabilization for O-algebras

For k ≥ 0, let ∆≤k denote the full subcategory of ∆ comprised of sets [`] ∈ ∆ for ` ≤ k (note
∆≤−1 = ∅). There are inclusions of categories

∅ = ∆≤−1 →∆≤0 →∆≤1 → · · · →∆≤k → · · · →∆

and moreover holim∆ Y may be computed as limit of the tower {holim∆≤k Y } (see, e.g., [20, §8.11]
for a detailed write-up). There is a natural homotopy left cofinal inclusion P0(n)→∆≤n−1 which,
in particular, allows us to model the comparison X → holim∆≤n−1 C(X) via the map χ0 (see
Section 2.11) for the coface n-cube associated to X → C(X).

By careful examination of the connectivities of these maps, Blomquist is able to obtain the
following strong convergence estimates as a corollary to [10, 7.1] (see also Dundas [25] and Dundas-
Goodwillie-McCarthy [26]).

Proposition 2.6. Let O be an operad in Spt whose entries are (−1)-connected, X ∈ AlgO k-
connected, and C(X) as in (2.4). Then, for any n ≥ 0 the induced map X → holim∆≤n−1 C(X) is
(k + 1)(n+ 1)-connected.
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These estimates show, in particular, if X is 0-connected then X
∼−→ X∧TQ (see also Ching-Harper

[19]).

3 Functor calculus and Goodwillie derivatives in AlgO
Functor calculus was introduced by Goodwillie in a landmark series of papers [31, 32, 33] as a
means of analyzing homotopy functors to or from Top∗ or Spt. Since, the theory been recognized
as a general phenomenon which, in particular, relates a suitable model category to its stabilization.
We refer the reader to [3] for an overview and exposition of some recent applications of the theory.

In this document we will only consider functors of structured ring spectra described as algebras
over a reduced operad O in Spt. We refer the reader to Pereira [49] for a more detail on functor
calculus in categories of structured ring spectra.

3.1 The Taylor tower

A central construction in functor calculus is that of the Taylor tower (sometimes referred to also
as the Goodwillie tower) of n-excisive approximations associated to a functor F : AlgO → AlgO as
follows

DnF

��
F // · · · // PnF // Pn−1F // · · · // P0F.

(3.1)

The functor PnF is called the n-th excisive approximation to F and is initial in the homotopy
category of n-excisive functors receiving a map from F . In this work, all of our approximations are
based at the zero object ∗ ∈ AlgO. The functor DnF is called the n-th homogeneous layer and is
defined as

DnF := hofib(PnF → Pn−1F ).

Note that P0F is a constant functor taking value F (∗). We call F reduced if F (∗) ' ∗ and note
that for reduced functors we have P1F ' D1F . We refer the reader to [32, §3] for the definition
and overview of the theory of n-excisive functors; though remark that such functors share similar
properties as the n-th Taylor polynomial associated to a function from calculus of one variable.

3.2 Analytic functors

If F satisfies additional connectivity conditions on certain cubical diagrams (e.g., if F is suitably
stably n-excisive for all n as in [32, 4.1]) we call F analytic, or more specifically ρ-analytic: a key
feature being that an analytic functor F may be recovered as the homotopy limit of the tower (3.1)
on ρ-connected inputs X, i.e.,

F (X) ' holimn PnF (X).

For instance, the identity functor on Top∗ is 1-analytic by the higher Blakers-Massey theorems
(see, e.g., [32, §2]) and the analogous results for structured ring spectra of Ching-Harper [19]
demonstrate that the identity functor on AlgO is 0-analytic.

3.3 Cross effects and derivatives

Let Sn(X1, . . . , Xn) denote the n-cube

T 7→
∨
t/∈T

Xt, for T ∈ P(n).
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The n-th cross effect of G is the n-variable functor defined by

crnG(X1, . . . , Xn) := tohofibG(Sn(X1, . . . , Xn)).

Our work concerns the derivatives of a functor F , which are certain spectra which classify the
homogeneous layers DnF (under some mild conditions on F ) and are computable via cross effects.
We recall first that a functor G is n-homogeneous if G is n-excisive and PkG ' ∗ for k < n and
that G is finitary if G commutes with filtered homotopy colimits.

A major triumph of functor calculus is the classification of n-homogeneous functors. Proposition
3.1 below is summarized from Goodwillie [33] (for functors of spaces) and Pereira [49] (for functors
ofO-algebras) and highlights the relevant properties of the homogeneous layers DnF and derivatives

∂nF associated to a functor F . For notational convenience we let T̃Q denote the composite g∗TQ '
τ1O ◦hO (−).

Proposition 3.1. Let F : AlgO → AlgO be a homotopy functor, X ∈ AlgO, and n ≥ 1. Then:

(i) DnF is n-homogeneous.

(ii) There are n-homogeneous functors DnF and D̃nF such that the following diagram commutes

AlgO
Q //

DnF

��

AlgJ
g∗ //

DnF
��

ModO[1]

D̃nF
��

AlgO AlgJU
oo ModO[1]

g∗
oo

(3.2)

(iii) There is a (J, J)-bimodule ∂∗F , whose n-th entry ∂nF is called the n-th Goodwillie derivative
of F , and such that there are equivalences of underlying spectra

DnF (X) ' in(∂∗F ) ◦hJ (TQ(X))

(iv) DnF is characterized by an (O[1],O[1]on)-bimodule2 ∂̃nF which has underlying spectrum
equivalent to that of ∂nF .

(v) There are equivalences of underlying spectra

DnF (X) ' (∂̃nF ∧LO[1]∧n T̃Q(X)∧
Ln)hΣn ' ∂̃nF ∧LO[1]on T̃Q(X)∧

Ln. (3.3)

(vi) The n-th derivative may be calculated via n-th cross effects crn as

∂nF ' ∂̃nF ' crn D̃nF (O[1], . . . ,O[1])

with right O[1]on-action granted by permuting the inputs.

2That is, a left module over O[1] and right module over O[1]on (see Definition 3.3 for the definition of the wreath
product O[1]on)
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Remark 3.2. The above equivalence (3.3) hold in general for finite cell O-algebras X and, if F
further is finitary (i.e., F commutes with filtered homotopy colimits), then the equivalences may be
extended to arbitrary O-algebras X. The notation ∧L and ◦h denote the derived smash product and
circle product, respectively. We will often omit the latter notation and understand our constructions
to be implicitly derived.

The careful reader might note that the n-th Goodwillie derivative of F is only defined up to weak

equivalence, and so the choice ∂nF vs. ∂̃nF may seem a pedantic distinction. For our purposes,
this distinction is beneficial to the readibility of several of the upcoming proofs. Further, there are
equivalences

Lg∗∂nF ' ∂̃nF and ∂nF ' Rg∗∂̃nF,

and for concreteness, the model for the derivatives of the identity we employ is as a (J, J)-bimodule,
TotC(O) (see (4.6)).

Of note is that the choice of DnF (resp. D̃nF ) may be made functorial in F by a straightforward
modification of the argument presented in [1, 2.7]. In particular if F is finitary, then for any
Y ∈ ModO[1] we have

D̃nF (Y ) ' ∂̃nF ∧O[1]on Y
∧n. (3.4)

3.4 A note on wreath products

We use O[1]on to denote the twisted group ring (i.e., wreath product) (Σn)+ ∧ O[1]∧n. We recall
some pertinent details of wreath products of ring spectra below.

Definition 3.3. Given a ring spectrum R we define

Ron := Σn·R∧n ∼= (Σn)+ ∧R∧n

with multiplication given by
(σ ∧ x) ∧ (τ ∧ y) 7→ στ ∧ xσ(y).

Our main use of such objects stems from the following proposition (see also [42, Lemma 14],
[40, §2]). Note that a right Ron-module is a (right) Σn object via the unit map I → R.

Proposition 3.4. Let R be a ring spectrum, X a left R-module and M a right R-module with n
commuting actions of R (i.e., right R∧n-module). Then, there is an isomorphism

(M ∧R∧n X∧n)Σn
∼= M ∧Ron X∧n.

Remark 3.5. The right-hand equivalence of (3.3) is an instance of this equivalence. Of note is
that if X is a cofibrant O-algebra, then TQ(X) is cofibrant in ModO[1] and therefore Proposition

3.4 provides that TQ(X)∧n is a cofibrant as a left O[1]on-module.

In addition, the (O[1],O[1]on)-bimodule structure on the derivatives ∂̃nF for all n ≥ 1 induces

(τ1O, τ1O)-bimodule structure on the symmetric sequence ∂̃∗F which is further compatible with the
(J, J)-bimodule structure on ∂∗F via the (g∗, g

∗) adjunction. In the simplified case that O[1] ∼= S,
an (S, Son)-bimodule is just a spectrum with a right action by Σn and (3.3) reduces to an equivalence
of underlying spectra

DnF (X) ' ∂̃nF ∧Σn T̃Q(X)∧n.
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3.5 Taylor towers of certain functors AlgO → AlgO
Let M be a cofibrant (O,O)-bimodule with M [0] = ∗ whose terms are (−1)-connected. We define
a functor FM : AlgO → AlgO at X ∈ AlgO by the simplicial bar construction

FM (X) = |Bar(M,O, X)| 'M ◦hO (X). (3.5)

Note FM is finitary and the left O action on M induces a left O action on FM (X). The
following proposition may be summarized from Harper-Hess [36] and Kuhn-Pereira [40, §2.7] and
further provides a model for the Taylor tower of functors FM . For completion, we sketch proofs of
the relevant details.

Proposition 3.6. Let M and FM be as described above. Then there are equivalences (natural in
M)

(i) PnFM ' τnM ◦hO (−)

(ii) DnFM ' inM ◦hO (−) ' inM ◦hJ (TQ(−))

(iii) D̃nFM (−) 'M [n] ∧LO[1]on (−)∧n

(iv) ∂̃nFM 'M [n]

such that the Taylor tower for FM is equivalent to

inM ◦hO (−)

��
FM // · · · // τnM ◦hO (−) // τn−1M ◦hO (−) // · · · // τ1M ◦hO (−).

Proof. We will write ◦ for ◦h and ∧ for ∧L. The equivalence (i) holds as τnM ◦O (−) is n-excisive
(see, e.g., [49, 4.3]) and by a connectivity argument (see [36, 1.14]). For (ii) we note that morphisms

τnM → τn−1M give rise to the comparison maps on excisive approximations PnFM
qn−→ Pn−1FM

and moreover the fiber sequence
inM → τnM → τn−1M

identifies inM ◦O (−) with the fiber of qn. Moreover, as the right O-action on inM factors through
τ1O there are then equivalences of underlying spectra

DnFM (X) ' (inM ◦τ1O τ1O) ◦O (X)

' inM ◦τ1O (τ1 ◦O (X)) ' inM ◦J (TQ(X)).

Note that (iii) follows from the observation that any Y ∈ ModO[1]

inM ◦τ1O (Y ) 'M [n] ∧O[1]on Y
∧n.

The proof of (iv) follows from the equivalence crn F ' crn F between cross-effects and co-cross-
effects of functors landing in a stable category as in Ching [16] (see also McCarthy [46]), where
latter is defined dually to crn as follows

crnG(X1, . . . , Xn) = tohocofib

(
P(n) 3 T 7→ G

(∏
t∈T

Xt

))
.
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In particular, taking co-cross-effects will commute with ∧O[1]on and so

crn D̃nFM ' crn(M [n] ∧O[1]on (−)∧n) 'M [n] ∧O[1]on crn((−)∧n).

Via the computation crn((−)∧n) ' (Σn)+ ∧ (−)∧n we then obtain

∂̃nFM 'M [n] ∧O[1]on O[1]on 'M [n].

q.e.d.

Definition 3.7. For functors of the form FM we take as our models for PnFM , DnFM and ∂̃nFM
those from Proposition 3.6. A map M →M ′ of cofibrant (O,O)-bimodules induces natural trans-

formations PnFM → PnFM ′ and DnFM → DnFM ′ , and also that ∂̃nFM → ∂̃nFM ′ is equivalent to
M [n]→M ′[n].

3.6 The Taylor tower of the identity on AlgO
Note that for M = O, the functor FO is equivalent to the identity via O◦O (−) ' IdAlgO . Moreover,
there are natural transformations IdAlgO → τnO ◦O (−) provided by the unit map of the change of
operads adjunction (Section 2.7) applied to the map of operads O → τnO. The Taylor tower of the
identity in AlgO then is equivalent to

inO ◦O (−)

��
IdAlgO

// · · · // τnO ◦O (−) // τn−1O ◦O (−) // · · · // τ1O ◦O (−)

(3.6)

This tower (3.6) has previously been studied by Harper-Hess [36] in relation to homotopy com-
pletion of O-algebras (see also Kuhn [41] and McCarthy-Minasian [47]). Moreover, Ching-Harper
provide AlgO analogues of the higher Blakers-Massey theorems in [19] which in particular show that
IdAlgO is 0-analytic. That is, for 0-connected X the following comparison map is an equivalence

X → holimn τnO ◦O (X).

As a corollary to Proposition 3.6, we obtain equivalences of underlying spectra (see also [36])

DnIdAlgO (X) ' inO ◦O (X) ' O[n] ∧O[1]on T̃Q(X)∧n

and also observe that ∂̃nIdAlgO ' O[n] as a (O[1],O[1]on)-bimodule for all n ≥ 1. Therefore, with
a view toward the operad structure on ∂∗IdTop∗ constructed by Ching in [15] we are lead to the
following question, found in Arone-Ching [1].

3.7 Main question

Is it possible to endow ∂∗IdAlgO with a naturally occurring operad structure such that ∂∗IdAlgO ' O
as operads?

A key idea to our approach is taken from Arone-Kankaanrinta [4] where they show that ∂∗IdTop∗
may be better understood by utilizing the cosimplicial resolution from the stabilization adjunction
(Σ∞,Ω∞) by means of the Snaith splitting. Within the realm of 0-connected O-algebras, the (Q,U)
adjunction between AlgO and AlgJ (the latter, recall, is Quillen equivalent to ModO[1]) is the exact
analogue of stabilization. We provide an AlgO analogue of the Snaith splitting in Section 4.2.
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4 A model for derivatives of the identity in AlgO
The aim of this section is to describe specifically the model for the derivatives of the identity we
employ, as Tot of a certain cosimplicial symmetric sequence C(O) which may be motivated as the
totalization of the cosimplicial object arising from a calculation of the n-th derivative of (QU)k via
the Snaith splitting in AlgO. We are further motivated by work of Arone-Kankaanrinta [4] which
utilizes the Snaith splitting in spaces (4.1) to provide a model for the derivatives of the identity in
spaces.

4.1 The Snaith splitting

We first recall the Snaith splitting in Top∗, that is, the existence of an equivalence (see, e.g., Snaith
[52] or Cohen-May-Taylor [22])

Σ∞Ω∞Σ∞(X) '
∨
n≥1

Σ∞X∧nΣn
∼=
∨
n≥1

S ∧Σn Σ∞X∧n (4.1)

where Σn acts on S trivially. We interpret the above to mean that the Taylor tower for the
associated comonad to the suspension adjunction, Σ∞Ω∞, splits on the image of Σ∞(−) as the
coproduct of its homogeneous layers and moreover that ∂n(Σ∞Ω∞) ' S with trivial Σn-action.
Via this splitting in spaces one obtains

∂n(Ω∞Σ∞)k+1 ' S◦k[n]

where S denotes the reduced symmetric sequence with S[n] = S with trivial Σn action. Further-
more, S inherits a natural cooperad structure and ∂∗IdTop∗ is equivalent to the cobar construction
on S (see [4], [15]).

Remark 4.1. In the sequel to this work [21], we describe a �̊-monoid (see Definition 5.5) C(S) ∈
SymSeq∆

Spt whose totalization is equivalent to the cobar construction on S. This allows for a new
description of an operad structure on ∂∗IdTop∗ using the methods from this document and addresses
item (i) of Section 1.1.

4.2 The Snaith splitting in AlgO
There is an analogous result for O-algebras, wherein the adjunction (Σ∞,Ω∞) is replaced by (Q,U)
from (2.5). Let B(O) be the (J, J)-bimodule

B(O) = J ◦hO J ' |Bar(J,O, J)|

and note that given Y ∈ AlgJ cofibrant there is a zig-zag of equivalences.

QU(Y )
∼←− |Bar(J,O, Y )| ∼−→ |Bar(J,O, J)| ◦J (Y ) = B(O) ◦J (Y ).

The AlgO Snaith splitting is then the equivalence

QU(Y ) ' B(O) ◦J (Y ). (4.2)

Remark 4.2. At first blush, (4.2) may not seem like a proper “splitting” in the style of (4.1).
This is more an artifact of our use of AlgJ for the stabilization of AlgO. Indeed, given instead
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Ỹ ∈ ModO[1], the associated comonad arising from the adjunction (g∗Q,Ug
∗) between AlgO and

ModO[1] has a natural splitting

g∗QUg
∗(Ỹ ) '

∨
k≥1

B̃(O)[k] ∧O[1]ok Ỹ
∧k

such that B̃(O) = τ1O ◦hO τ1O ' |Bar(τ1O,O, τ1O)| ' |Bar(J,O, J)| ' B(O).

4.3 Cooperad structure on B(O)

It is known that B(O) (resp. B̃(O)) is a coaugmented cooperad, at least in the homotopy category
of spectra (see, e.g., Ching [15] for the topological case, Lurie [44, §5] for an∞-categorical approach,
or Ginzburg-Kapranov [30] for the chain complexes case) via the natural comultiplication

J ◦hO J ' J ◦hO O ◦hO J → J ◦hO J ◦hO J ' (J ◦hO J) ◦J (J ◦hO J).

We would like to say that the AlgO Snaith splitting allows one to immediately recognize ∂∗IdAlgO
as the cobar construction on B(O), however the splittings provided seem to be too weak to justify
this claim (a similar problem is enocuntered in Arone-Kankaanrinta [4] for the classic Snaith split-
ting). As such, one benefit of our work is that we do not require any more rigid cooperad structure
on B(O) to produce our model for ∂∗IdAlgO .

Also of note is that the AlgO Snaith splitting may be interpreted to say that any Y ∈ AlgJ
(resp. Ỹ ∈ ModO[1]) is naturally a divided power coalgebra over B(O) (resp. B̃(O)), at least in the
homotopy category, and that the functor X 7→ TQ(X) underlies the left-adjoint to the conjectured
Quillen equivalence (i.e., Koszul duality equivalence) between nilpotent O-algebras and nilpotent
divided power B(O)-coalgebras from Francis-Gaitsgory [29] (which has since been partially resolved
by Ching-Harper [20]).

4.4 Interaction of the stabilization resolution with Taylor towers

We now provide the explicit model we employ for ∂∗IdAlgO . Our argument is essentially to show
that one can “move the ∂∗ inside the holim” on the right hand side of (2.6) by higher stabilization
and then use the AlgO Snaith splitting to recognize the resulting diagram. Let us write Id for
IdAlgO .

Proposition 4.3. Let k ≥ n ≥ 1, then PnId
∼−→ holim∆≤k−1 Pn((UQ)•+1).

Proof. The estimates from Proposition 2.6 suffice to show that the map

ck : Id→ holim∆≤k−1 C(−)

agrees to order n on the subcategory of 0-connected objects (see [33, 1.2]) in which case Pn(ck) is
an equivalence via [33, 1.6]. Further,

Pn(holim∆≤k−1 C(−)) ' holim∆≤k−1 Pn((UQ)•+1)

as Pn(−) commutes with very finite3 homotopy limits by construction (cf. Section 2.12). q.e.d.

3Recall that a very finite homotopy limit is one taken over a diagram whose nerve has only finitely many nonde-
generate simplices, and that such homotopy limits will commute with filtered homotopy colimits. Homotopy limits
over n-cubes and punctured n-cubes are very finite
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Since Dn(−) and ∂n(−) are built from Pn(−) by very finite homotopy limits, Proposition 4.3
extends to an equivalence on homogeneous layers and derivatives as well. Moreover, the restriction
map

holim∆ Pn((UQ)•+1)→ holim∆≤k−1 Pn((UQ)•+1)

is an equivalence for k ≥ n ≥ 1 as the objects as a corollary to the higher stabilization estimates
from Proposition 2.6 (resp. for Dn and ∂n).

Let M be an (O,O)-bimodule. For notational convenience, for k ≥ 1, we set

M (k) = M ◦O · · · ◦O M︸ ︷︷ ︸
k

. (4.3)

Note that J (k) is a cofibrant (O,O)-bimodule with (UQ)k+1(X) = J (k+1) ◦O (X). By Proposition
3.6, there are then equivalences

PnId
∼−→holim∆≤k−1

(
Pn(UQ) // // Pn((UQ)2) ////

//
Pn((UQ)3) · · ·

)
'holim∆≤k−1

(
τnJ

(1) ◦O (−) // // τnJ (2) ◦O (−)
// //// τnJ

(3) ◦O (−) · · ·
)

and

DnId
∼−→holim∆≤k−1

(
Dn(UQ) // // Dn((UQ)2) ////

//
Dn((UQ)3) · · ·

)
'holim∆≤k−1

(
inJ

(1) ◦O (−) // // inJ (2) ◦O (−)
// //// inJ

(3) ◦O (−) · · ·
)

whenever k ≥ n ≥ 1.
Note there is an equivalence of restricted diagrams

(τnJ
(•+1) ◦O (−))|∆≤k−1 ' Pn((UQ)•+1)|∆≤k−1

(resp. (inJ
(•+1) ◦O (−))|∆≤k−1 ' Dn((UQ)•+1)|∆≤k−1) by first replacing the coface k-cube associ-

ated to
Id→ (UQ)•+1

by the k-cube Zk (see (4.4) below) and then applying τn (resp. in) objectwise.

{P(k) 3 T 7→ Zk(T ) = (Z1 ◦O · · · ◦O Zk) ◦O (−)} such that Zi =

{
J i ∈ T
O i /∈ T

(4.4)

We then use the corresponding models for D̃n from Proposition 3.6 and compute the n-th
derivatives via cross effects to obtain equivalences

∂̃nId
∼−→holim∆≤k−1

(
∂̃n(UQ) // // ∂̃n((UQ)2) ////

//
∂̃n((UQ)3) · · ·

)
(4.5)

'holim∆≤k−1

(
(τ1O)(1)[n] //// (τ1O)(2)[n]

////// (τ1O)(3)[n] · · ·
)
.

for k ≥ n ≥ 1.
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Example 4.4. We sketch this process for k = n = 2. Note, there is an isomorphism of square
diagrams of the form

Id
d0

//

d0

��

UQ

d0

��
UQ

d1
// UQUQ

∼=

(O ◦O O) ◦O (−)
d0
//

d0

��

(O ◦O J) ◦O (−)

d0

��
(J ◦O O) ◦O (−)

d1
// (J ◦O J) ◦O (−).

Taking 2-homogeneous layers, we obtain an equivalence of homotopy pullback squares

D2Id
d0

//

d0

��

D2(UQ)

d0

��
D2(UQ)

d1
// D2(UQUQ)

'

i2(O ◦O O) ◦O (−)
d0
//

d0

��

i2(O ◦O J) ◦O (−)

d0

��
i2(J ◦O O) ◦O (−)

d1
// i2(J ◦O J) ◦O (−).

The associated lifts D̃2(−) to functors on ModO[1] from Proposition 3.6 then fit into a homotopy
pullback square

D̃2Id
d0

//

d0

��

(O ◦O τ1O)[2] ∧O[1]o2 (−)∧2

d0

��
(τ1O ◦O O)[2] ∧O[1]o2 (−)∧2 d1

// (τ1O ◦O τ1O)[2] ∧O[1]o2 (−)∧2

which by taking cross effects cr2 then provides an equivalence of homotopy pullback squares

∂̃2Id
d0

//

d0

��

∂̃2(UQ)

d0

��
∂̃2(UQ)

d1
// ∂̃2(UQUQ)

'

∂̃2Id

d0

��

d0
// τ1O[2]

d0

��
τ1O[2]

d1
// (τ1O ◦O τ1O)[2]

'

∂2Id

d0

��

d0
// J [2]

d0

��
J [2]

d1
// (J ◦O J)[2].

Remark 4.5. It follows then that ∂∗Id is obtained as holim∆ C(O) ' TotC(O), where C(O) is
the following cosimplicial diagram (showing only coface maps)

C(O) =
(
J ◦O O //// J ◦O J ◦O O // //

//
J ◦O J ◦O J ◦O O · · ·

)
(4.6)

∼=
(
J // // J ◦O J ////

//
J ◦O J ◦O J · · ·

)
,

with coface maps as in (2.6), i.e., C(O) = J (•+1). In other words C(O) provides a rigidification of
the diagram ∂∗(UQ)•+1 whose terms are a priori defined only up to homotopy.

5 The box-product of cosimplicial objects

The aim of this section is to introduce the box product � for cosimplicial objects in a monoidal
category (C,⊗,1) as first introduced by Batanin [6]. For nice categories C (e.g., C closed, symmetric
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monoidal), the box product endows C∆ with a monoidal structure, and cosimplicial objects which
admits a monoidal pairing with respect to � inherit an A∞-monoidal pairing on their totalizations
(see, e.g., McClure-Smith [48, 3.1]).

Our use of the box product will be to produce a homotopy-coherent (i.e., A∞-) composi-
tion on the derivatives of the identity, modeled as TotC(O), by demonstrating a natural pairing
C(O)�C(O)→ C(O) (Example 5.3).

Definition 5.1. Let (C,⊗,1) be a monoidal category and X,Y ∈ C∆. Define their box product
X�Y ∈ C∆ at level n by

(X�Y )n := colim

 ∐
p+q=n

Xp ⊗ Y q
∐

r+s=n−1

Xr ⊗ Y soo
oo


where the maps are induced by id ⊗ d0 and dr+1 ⊗ id. The object X�Y inherits cosimplicial
structure via coface maps di : (X�Y )n → (X�Y )n+1 induced byXp ⊗ Y q di⊗id−−−−−→ Xp+1 ⊗ Y q i ≤ p

Xp ⊗ Y q id⊗di−p−−−−−−−→ Xp ⊗ Y q+1 i > p

and codegeneracy maps sj : (X�Y )n → (X�Y )n−1 induced byXp ⊗ Y q sj⊗id−−−−−→ Xp−1 ⊗ Y q j < p

Xp ⊗ Y q id⊗sj−p−−−−−−−→ Xp ⊗ Y q−1 j ≥ p

see also Ching-Harper [20, §4].

Remark 5.2. Note, (X�Y )0 ∼= X0⊗Y 0, (X�Y )1 and (X�Y )2 may be computed as the colimits
of

X0 ⊗ Y 1

X0 ⊗ Y 0

d1⊗id

//

id⊗d0

OO

X1 ⊗ Y 0 and

X0 ⊗ Y 2

X0 ⊗ Y 1

d1⊗id

//

id⊗d0

OO

X1 ⊗ Y 1

X1 ⊗ Y 0

id⊗d0

OO

d2⊗id

// X2 ⊗ Y 0



Derivatives of the identity 139

respectively, and in general (X�Y )n may be computed as the colimit of the staircase diagram

X0 ⊗ Y n

X0 ⊗ Y n−1

d1⊗id

//

id⊗d0

OO

X1 ⊗ Y n−1

. . .

OO

// Xn−1 ⊗ Y 1

Xn−1 ⊗ Y 0

id⊗d0

OO

dn⊗id
// Xn ⊗ Y 0

(5.1)

In particular, if (C,⊗,1) is closed, symmetric monoidal then � defines a monoidal category
(C∆,�,1), here 1 is the constant cosimplicial object on the unit 1 ∈ C (see, e.g., Batanin [6]).

Example 5.3. Recall the cosimplicial symmetric sequence C(O) = J (•+1) from (4.6). We observe

that C(O) admits a pairing C(O)�̊C(O)
m−→ C(O), where �̊ denotes the box product in SymSeq∆

Spt,
induced as follows. Let c denote the operad composition map c : J ◦ J → J . Then,

(C(O)�̊C(O))0 ∼= J ◦ J c−→ J = C(O)0

For level 1 we observe that there are maps

m0,1 : J ◦ J ◦O J → J ◦O J and m1,0 : J ◦O J ◦ J → J ◦O J

induced by J ◦ J → J which induces m via the following commuting square

J ◦ J ◦O J
m0,1 // J ◦O J

J ◦ J

id◦d0

OO

d1◦id // J ◦O J ◦ J

m1,0

OO (5.2)

More generally, there are maps of the form

mp,q : J (p) ◦ J (q) → J (p+q) for p+ q = n, p, q ≥ 0

induced by c, which induces the pairing m at level n.

Remark 5.4. The above construction is entirely analogous to the following example found in
McClure-Smith [48] that the based loop space ΩX of X ∈ Top∗ admits an A∞ composition induced
by an underlying �-pairing. In this case, ΩX is modeled as the totalization of the cobar complex
c(X) built with respect to the natural comultiplication (with coaugmentation) given by the diagonal
δ : X → X ×X.
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It follows that c(X)p ∼= X×p and the pairing c(X)�c(X) → c(X) is induced by the natural
isomorphisms X×p × X×q ∼= X×p+q. Further, McClure-Smith show that Tot c(X) is an algebra
over the (nonsymmetric) coendmorphism operad on ∆•, i.e.,

A[n] = MapTop
∆res

(
∆•, (∆•)�n

)
which satisfies A[0] = ∗ and A[n]

∼−→ ∗ for n ≥ 1 (in fact ∆n and (∆•�∆•)n are homeomorphic),
and that with respect to this structure Tot c(X) ' ΩX as A∞-monoids.

5.1 The box product in SymSeq∆

Our aim now is to build a framework in which we can work with the structure captured by Example
5.3, e.g., by considering the box-product in the category of cosimplicial objects in (SymSeqC, ◦, I)
of symmetric sequences for (C,⊗,1) some closed symmetric monoidal category.

The main difficulty is that the composition product of symmetric sequences does not always
commute with colimits taken in the right hand entry. That is, for B : I → SymSeqC a small diagram
and A ∈ SymSeqC, the universal map

colimi∈I(A ◦Bi)→ A ◦ (colimi∈I Bi) (5.3)

is not an isomorphism in general. Thus the box-product fails to be strictly monoidal in this setting.
Let us write SymSeq = SymSeqC and �̊ for the box-product in SymSeq∆ (in words we refer

to �̊ as the box-circle product). Let X ,Y,Z, . . . be cosimplicial symmetric sequences. We will
systematically interpret expressions of the form X �̊Y�̊Z to be expanded from the left, i.e.,

X �̊Y�̊Z := (X �̊Y)�̊Z, X �̊Y�̊Z�̊W := ((X �̊Y)�̊Z)�̊W, . . .

and note that via the universal map in (5.3) there is always a canonical comparison map θ of the
form

θ : X �̊Y�̊Z = (X �̊Y)�̊Z → X �̊(Y�̊Z) (5.4)

which likely fails to be invertible. However, θ is sufficient to provide a suitable description of
monoids with respect to �̊, i.e., Definition 5.5, below. First, we note that the unit I ∈ SymSeqC
induces a unit I ∈ SymSeqC as the constant cosimplicial object on I in that there are isomorphisms

X �̊I ∼= X ∼= I�̊X .

For instance, the right isomorphism is obtained by noting that for any p, q the map dp+1 ◦ id in
the following

Ip ◦ X q+1

Ip ◦ X q
id◦d0

OO

dp+1◦id // Ip+1 ◦ X q

is just the identity (and hence has an inverse). Therefore, the inclusion of the vertex I0 ◦ Xn into
the diagram defining (X �̊X )n is right cofinal (i.e., induces an isomorphism on colimits).
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Definition 5.5. By �̊-monoid in SymSeq∆, we mean a cosimplicial symmetric sequence X together
with maps m : X �̊X → X and u : I → X so that the following associativity (5.5) and unitality
(5.6) diagrams commute

X �̊X �̊X θ //

=

��

X �̊(X �̊X )
id�̊m // X �̊X

m

��
(X �̊X )�̊X m�̊id // X �̊X m // X

(5.5)

and

X �̊I id�̊u //

∼= ##

X �̊X

m

��

I�̊Xu�̊idoo

∼={{
X

(5.6)

Remark 5.6. We remark that in the language of Ching [17] (see also Day-Street [23]), �̊ admits
a normal oplax monoidal structure by defining

X1�̊ · · · �̊Xk := (· · · ((X1�̊X2)�̊X3) · · · )�̊Xk

and obtaining grouping maps from the universal map in (5.3). Our notion of �̊-monoids are normal
oplax monoids with respect to such structure by appealing to Ching [17, 3.4], noting in particular
that four-fold and higher associativity diagrams are known to commute given the commutativity
of (5.5).

Proposition 5.7. The cosimplicial symmetric sequence C(O) (see (4.6)) admits a natural �̊-
monoid structure, i.e., there are maps m : C(O)�̊C(O) → C(O) and u : I → C(O) which satisfy
associativity and unitality.

Proof. The map m is that constructed in Example 5.3. The unit I → J provides a coaugmentation
I → C(O) which in turn induces a map u : I → C(O).

Associativity (5.5) follows from a routine calculation, observing that

d0 : (C(O)�̊C(O))q → (C(O)�̊C(O))q+1

is induced by d0 ◦ id : C(O)r ◦ C(O)s → C(O)r+1 ◦ C(O)s for r + s = q. Similarly, the right-hand
triangle from the unitality diagram (5.6) is granted by the following commuting diagrams

Ip ◦ C(O)q
up◦id //

∼=
��

C(O)p ◦ C(O)q

mp,q

��
C(O)q

d0···d0
// C(O)p+q

for all p, q. A similar argument provides the commutativity of the other side of the unitality
diagram. q.e.d.
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Theorem 1.1(a) is then obtained as a corollary to the following proposition, the proof of which
is deferred to Section 8.1. As such, the aim of the following sections is to set up a precise framework
to describe what is meant by A∞-operad.

Proposition 5.8. If X is a �̊-monoid in SymSeq∆
Spt, then TotX is an A∞-monoid with respect to

the composition product (i.e., A∞-operad).

6 N-colored operads with levels

In this section we develop our theory of N = {0, 1, 2, . . . }-colored operads with levels, which we refer
to as Nlev-operads. The motivating principle behind our constructions is to provide a framework
to fatten-up the usual notion of operads and their algebras. For this section (C,⊗,1) will denote
a given cocomplete closed, symmetric monoidal category with initial object ???. We first recall the
classical theory of colored operads.

6.1 Colored operads

Colored operads (sometimes also referred to as multicategories) offer a generalization of operads to
encode more nuanced algebraic operations on their algebras. We give an overview of their pertinent
details below and refer the reader to Leinster [43] or Elmendorf-Mandell [27] for more information.
As before, we will only need to consider colored operads in the category of spectra.

Definition 6.1. Let C be a nonempty set, i.e., a set of colors. A C-colored operad M in C consists
of

• Objects M(c1, . . . , cn; d) ∈ C for all (c1, . . . , cn; d) ∈ C×n × C and n ≥ 0

• A unit map 1→M(c; c) for all c ∈ C

• Composition maps of the form

M(c1, . . . , cn; d)⊗M(p1,1, . . . , p1,k1
; c1)⊗ · · · ⊗M(pn,1, . . . , pn,kn ; cn)

→M(p1,1, . . . , pn,kn ; d)

subject equivariance, associativity and unitality conditions (see, e.g., [27, 2.1]).

An algebra over M is a C-colored object, i.e., X = {Xc}c∈C such that Xc ∈ C for all c ∈ C,
together with maps for each tuple (c1, . . . , cn; d) ∈ C×n × C of the form

M(c1, . . . , cn; d)⊗Xc1 ⊗ · · · ⊗Xcn → Xd

the collection of which is required to satisfy equivariance, associativity and unitality conditions.
Berger-Moerdijk provide a list of examples in [9, §1.5]; of note is that for C = {∗}, a one-colored

operad is just an operad in the classical sense. The following constructions are also motivated by
White-Yau [53] wherein a composition product for C-colored operads is provided.
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6.2 Nlev-objects

The purpose of this section is to introduce the notion of a nonsymmetric, N-colored sequence with
levels in C. We will refer to these as Nlev-objects. In our framework, Nlev-objects will play a role
analogous to symmetric sequences for classical (one-color) operads, though we note that we do not
yet impose any symmetric group actions on our Nlev-objects. Let s denote the set {1, . . . , s} (note
that 0 = ∅).

Definition 6.2. For k ≥ 0, let N◦̂k denote the set of tuples of orbits

N◦̂k :=
{(
n1, (n2

1, · · · , n2
n1)Σn1 , · · · , (nk1 , · · · , nknk−1)Σ

nk−1

)
: nji ≥ 0 ∀i, j

}
where nj is inductively defined as

∑nj−1

i=1 nji and we set n0 := 1. We then treat N◦̂k as a category
with only identity morphisms.

Note that the superscripts in Definition 6.2 are used for indexing and are not powers, we will
adhere to this convention throughout the document. Elements p ∈ N◦̂k will be referred to as profiles,
we will often suppress the orbit subscript and write (n1, . . . , ns) for the orbit (n1, . . . , ns)Σs .

Definition 6.3. Given p = (n1, . . . , (nki )i∈nk−1) ∈ N◦̂k, we define the weight of p to be the integer

nk =
∑
i∈nk−1 nki . For t ∈ N, we write N◦̂k[t] for the set of profiles p ∈ N◦̂k of weight t.

Example 6.4. Computing small examples we see

N◦̂0 = {∅}, N◦̂2 ∼= {(n, (k1, . . . , kn)) : n, ki ≥ 0},
N◦̂1 ∼= N, N◦̂3 ∼= {(n, (k1, . . . , kn), (t1, . . . , tk) : k = k1 + · · ·+ kn, n, ki, tj ≥ 0}.

Remark 6.5. Note that profiles in N◦̂` are in bijective correspondence to indexing factors of `-fold
iterates of ◦̂ from (2.3), therefore objects indexed on N◦̂` naturally arise when evaluating `-fold
iterates of the composition product of symmetric sequences (Definition 2.2) from the left.

Given p = (n1, (n2
i )i∈n1 . . . , (n`i)i∈n`−1) ∈ N◦̂`[t], the term

(X1 ◦ · · · ◦X`)[p]

is the collection of factors in (X1 ◦ · · · ◦X`)[t] corresponding to the indexing tuples

(nj1, . . . , n
j
n1)Σnj−1 ∈ Sumnj

nj−1 ,

for j = 1, . . . , `.

Definition 6.6. Given profiles p, q ∈ N◦̂k we define their amalgamation p q q to be the orbit of
the levelwise disjoint union of the two profiles. In other words, given

p = (n1, (n2
i )i∈n1 , (n3

i )i∈n2 , . . . , (nki )i∈nk−1),

q = (m1, (m2
j )j∈m1 , (m3

j )j∈m2 , . . . , (mk
j )j∈mk−1),

then pq q is given by

pq q :=
(

(n1,m1),
(
(n2
i )i∈n1 q (m2

j )j∈m1

)
, . . . ,

(
(nki )i∈nk−1 q (mk

j )j∈mk−1

))
.
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Remark 6.7. Note that p q q is not an element of any N◦̂k as its first entry is not a singleton.

However, if p
i
∈ N◦̂k[ti] for i = 1, . . . , n then(

n, p1 q · · · q pn
)
∈ N◦̂k+1[t1 + · · ·+ tn].

For instance, if p = (2, (2, 3)) and q = (3, (2, 3, 4)) then(
2, pq q

)
=
(
2, (2, 3)Σ2

, (2, 3, 2, 3, 4)Σ5

)
∈ N◦̂3[14].

Definition 6.8. An Nlev-object P in a symmetric monoidal category C is a functor

P :
∐
`≥0

N◦̂` ×N→ C.

Equivalently, P = (Pk)k≥0 such that Pk is a functor N◦̂k×N→ C. We also refer to Nlev-objects
as N-colored objects with levels. We further say an Nlev-object P is reduced if

• For ` ≥ 1, P`(p; t) = ??? if p /∈ N◦̂`[t]

• P0(∅; 1) = 1

• P0(∅;n) = ??? for n 6= 1.

Recall that ??? denotes the initial object of C.

Note if P is reduced then P is determined by a functor
∐
`≥0 N◦̂` → C. We will mostly be

concerned with reduced Nlev-objects, but benefit from this more general definition when we discuss
algebras in Section 6.9.

6.3 A composition product for Nlev-objects

The aim of this section is develop a monoidal composition product for Nlev-objects so that we may
encode Nlev-operads as monoids.

Definition 6.9. Let p = (n1, (n2
i )i∈n1 , . . . , (nki )i∈nk−1) ∈ N◦̂k and let `1, . . . , `k ≥ 0 be given. Let

Q denote a collection of unordered sequences of profiles (qj
1
, · · · , qjnj−1) for j = 1, . . . , k such that

qj
i
∈ N◦̂`j [nji ].

We define the composite of p and Q to be the profile p ◦Q ∈ N◦̂(`1+···+`k) given as follows

p ◦Q :=
(
q1, q2

1
q · · · q q2

n1 , · · · , qk1 q · · · q q
k
nk−1

)
.

Let

N◦̂k n

 ∐
`1,··· ,`k≥0

N◦̂`1 × · · · ×N◦̂`k


be the collection of all pairs (p,Q) such that

p = (n1, (n2
i )i∈n1 , . . . , (nki )i∈nk−1), Q = (q1, · · · , (qk

j
)j∈nk−1)

so that the composite p ◦Q is defined (i.e., qj
i
∈ N◦̂`j [nji ]).
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Remark 6.10. It is convenient to think of an element p = (n1, . . . , (nki )) ∈ N◦̂k[t] as describing a
family of planar rooted trees (see, e.g. [15]) with t leaves and k levels. More precisely, the numbers
nji describe the valence (number of input edges) to the i-th node at the j-th level, and a tree in this

family is determined by a family of morphisms ϕj : nj → nj−1 for 1 ≤ j < k such that |ϕ−1
j (i)| = nji

for all i, j.
Let Q be so that p ◦Q is defined. From this perspective, a tree in the family corresponding to

p ◦Q is build by “blowing up” each node nji from p by a tree from the family corresponding to the

profile qji from Q.

Definition 6.11. We define the tensor ⊗̂ of reduced Nlev-objects Q1, · · · ,Qk to be the left Kan
extension of the following

∐
k≥0

(
N◦̂k n (

∐
`1,··· ,`k≥0 N◦̂`1 × · · · ×N◦̂`k)

)
Q1◦̂···◦̂Qk //

(p,Q)7→p◦Q
��

C

∐
`≥0 N◦̂`

Q1⊗̂···⊗̂Qk

left Kan ext.
// C

(6.1)

such that if p ◦Q ∈ N◦̂`1+···+`k [t], then

(Q1◦̂ · · · ◦̂Qk)(p ◦Q; t) := Q1
`1(q1;n1)⊗

⊗
i∈n1

Q2
`2(q2

i
;n2
i ) · · · ⊗

⊗
i∈nk−1

Qk`k(qk
i
;nki ).

Note then that (Q⊗̂k)` ∼=
∐
`1+···+`k=`Q`1 ◦̂ · · · ◦̂Q`k , more specifically:

(Q⊗̂k)`(p; t) ∼=
∐

`1+···+`k=`

∐
p=p′◦Q

(Q◦̂ · · · ◦̂Q)(p ◦Q; t) (6.2)

where we note that the summands `j are ordered.

Definition 6.12. Let P and Q be reduced Nlev-objects in C. Their nonsymmetric composition
product � is defined as the coend P− ⊗N Q⊗̂− where N denotes the category of finite sets n for
n ≥ 0 with only identity morphisms. That is,

(P�Q)` ∼=
∐
k≥0

Pk⊗̇(Q⊗̂k)`.

We use the notation ⊗̇ to designate the product Pk⊗̇(Q`1 ◦̂ · · · ◦̂Q`k) is evaluated at a profile
(p; t) as follows

(Pk⊗̇(Q`1 ◦̂ · · · ◦̂Q`k))(p; t) ∼=
∐

p=p′◦Q
Pk(p′; s′)⊗ (Q1◦̂ · · · ◦̂Qk)(p ◦Q; t)

where p′ ∈ N◦̂k[s′] and Q is a family (qj
i
) as in (6.9) with qj

i
∈ N◦̂`j [sji ].
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We necessarily then have

p′ =
(
s1, (s2

1, . . . , s
2
s1), . . . , (sk1 , . . . , s

k
sk−1)

)
and can further describe P�Q as

(P�Q)`(p; t) ∼=
∐

`1+···+`k=`

∐
p=p′◦Q

Pk(p′; s′)⊗
k⊗
j=1

⊗
i∈nj

Q`j (qji ;n
j
i )

 (6.3)

Example 6.13. We will evaluate (P�Q)3 at

p = (n, (ki)i∈n, (tj)j∈k) ∈ N◦̂3[t]

for P,Q reduced Nlev-objects. Set k := k1 + · · ·+ kn, we observe

(
P2⊗̇(Q1◦̂Q2)

)
(p; t) =

∐
p=(n,(q

1
q···qq

n
))

P2(n, (s1, . . . , sn); t)⊗

(
Q1(n;n)⊗

⊗
i∈n

Q2(q
i
; si)

)

where q
i
∈ N◦̂2[si].

Using the language of Remark 6.10, we think of the above as partitioning the set of nodes
(tj)j∈k from p into n sets of size k1, . . . , kn, e.g., by defining a map ϕ : k→ n such that |ϕ−1(i)| =
ki for i = 1, . . . , n. Such a partition determines n profiles q

i
= (ki, (tj)j∈ϕ−1(i)) ∈ N◦̂2[si] for

i = 1, . . . , n where necessarily si is the sum
∑
j∈ϕ−1(i) tj . This precisely determines all possible

ways of expressing the family of trees associated to p by a “vertex blowup” of the form p = p′ ◦ Q,

where p′ ∈ N◦̂2[t], q1 ∈ N◦̂1[n] and each q2
i
∈ N◦̂2. The term

(
P2⊗̇(Q1◦̂Q2)

)
(p; t) is then obtained

by using P to evaluate p′ and Q to evaluate the profiles from Q.
Similarly,

(P2⊗̇(Q2◦̂Q1))(p; t) = P2 (k, (tj)j∈k; t)⊗

Q2(n, (ki)i∈n; k)⊗
⊗
j∈k

Q1(tj ; tj)

 ,

(P1⊗̇Q3)(p; t) = P1(t; t)⊗Q3(p; t),

(P3⊗̇(Q1◦̂Q1◦̂Q1))(p; t) = P3(p; t)⊗

Q1(n;n)⊗
⊗
i∈n

Q1(ki; ki)⊗
⊗
j∈k

Q1(tj ; tj)

 .

Proposition 6.14. The category of Nlev-objects equipped with the composition product � is
monoidal.

Proof. It is straightforward to verify that � has a two-sided unit, I, given by I1(n;n) = 1 and
I = ??? otherwise. For Nlev-objects P,Q,R, there is a natural isomorphism (P�Q)�R ∼= P�(Q�R)
induced by the natural isomorphisms(

Pn⊗̇
(
Qk1
◦̂ · · · ◦̂Qkn

))
⊗̇
(
R`1,1 ◦̂ · · · ◦̂R`n,kn

)
(6.4)

∼= Pn⊗̇
((
Qk1
⊗̇(R`1,1 ◦̂ · · · ◦̂R`1,k1

)
)
◦̂ · · · ◦̂

(
Qkn⊗̇(R`n,1 ◦̂ · · · ◦̂R`n,kn )

))
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obtained by a tedious but ultimately straightforward calculation. The remainder of the monoidal
category axioms follow from similar observations. q.e.d.

Definition 6.15. A nonsymmetric Nlev-operad is a reduced Nlev-object P which is a monoid with
respect to �. That is, there are unital and associative maps of Nlev-objects ξ : P�P → P and
ε : I → P, i.e., such that the following diagrams commute

P�P�P
ξ�id //

id�ξ
��

P�P

ξ

��
P�P

ξ // P

P�I id�ε // P�P

ξ

��

I�Pε�idoo

P
∼=

dd

∼=

::

6.4 Algebras over a nonsymmetric Nlev-operad

Let (−̂) denote the inclusion of N-colored objects to Nlev-objects given by

X̂0(∅;n) = X[n] and X̂k = ??? for k ≥ 1.

Note that X̂ is not reduced, but a straightforward modification of Definition 6.11 provides that(
X̂⊗̂n

)
0
∼= X ◦̂n and

(
X̂⊗̂n

)
k
∼= ??? for k ≥ 1. Similarly, (−̂) is left adjoint to Ev0 which takes values

in nonsymmetric sequences and is defined at an Nlev-object P as

(Ev0P)[n] := P0(∅;n).

If P is a nonsymmetric Nlev-operad then P�X̂ remains concentrated at level 0 and hence defines
a monad on N-colored objects

P�(−) : X 7→ Ev0(P�X̂).

Definition 6.16. We say that an N-colored object X is an algebra over an nonsymmetric Nlev-
operad P if there is an action map

P�(X)
µ−−→ X

which is associative and unital in that the following diagrams commute.

P�P�(X)
ξ�id //

id�µ
��

P�(X)

µ

��
P�(X)

µ // X

P�(X)
µ // X

I�(X)

ε

OO

∼=

<<

We denote by Algωlev (P) the category of algebras over a nonsymmetric Nlev-operad P along with
P-action preserving maps. Note that an action map µ consists of pieces

µk : Pk⊗̇(X ◦̂k)→ X

for k ≥ 0 and that Algωlev (P) is complete and cocomplete and moreover that limits are built in the
underlying category of N-colored objects.
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6.5 Change of Nlev-operads adjunction

Given a map of nonsymmetric Nlev-operads σ : P → Q and a P-algebra X we define Q�P(X) by
the reflexive coequalizer

Q�P(X) := colim
(
Q�(X) Q�P�(X)

oo
oo

)
.

The top map above is given by P�(X)
µP−−−→ X and the bottom is induced by the composite

Q�P id�σ−−−−→ Q�Q ξQ−−→ Q.

The resulting object Q�P(X) inherits a natural Q algebra structure and the construction fits
into an adjunction as in the following proposition.

Proposition 6.17. Given a map of nonsymmetric Nlev-operads P σ−−→ Q there is a change of
nonsymmetric Nlev-operads adjunction

Algωlev (P)
Q�P(−)//

Algωlev (Q)
σ∗
oo

with right adjoint σ∗ given by restriction along σ.

6.6 A forgetful functor to N-colored operads

We describe forgetful functor U from Nlev-operads to N-colored operads (specifically, nonsymmetric
N-colored operads). Given p = ((n1, · · · , (n`i)i∈n`−1) ∈ N◦̂`, we set s(p) to be the unordered list of
the elements of the levels of p, i.e.,

s(p) :=
{
nji : j ∈ {1, · · · , n}, i ∈ nj

}
.

Given an Nlev-object Q we define UQ by

(UQ)(c1, . . . , ck; t) :=
∐

s(p)=(c1,...,ck)

Q`(p; t) (6.5)

where the coproduct ranges over p ∈
∐
`≥0 N◦̂`. We leave the proof of the following proposition to

the reader.

Proposition 6.18. If P is an Nlev-operad then UP is a (nonsymmetric) N-colored operad. Fur-
thermore, the categories Algωlev (P) and AlgUP are equivalent.

6.7 Symmetric Nlev-objects

We now impart symmetric group actions on our Nlev-objects in a way that captures operadic
composition. Denote by IΣ the Nlev-object in (C,⊗,1) with

IΣ
` (p; t) =

{
Σ[n] ` = 1, p = n = t

??? otherwise
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Recall here that Σ[n] =
∐
σ∈Σn

1. Note that IΣ is a nonsymmetric Nlev-operad whose compo-
sition maps are induced by the block matrix inclusions

Σn × (Σk1
× · · · × Σkn)→ Σk1+···+kn .

Moreover the data of an algebra over IΣ is precisely that of a symmetric sequence; i.e., AlgωIΣ
∼=

SymSeq.

Definition 6.19. An Nlev-object P symmetric if P has compatible right and left actions of IΣ in
that the following diagram must commute

IΣ�P�IΣ µ`�id //

id�µr
��

P�IΣ

µr

��
IΣ�P

µ` // P

where µ` (resp. µr) denotes the left (resp. right) action map of IΣ on P.

In other words, a symmetric Nlev-object is an (IΣ, IΣ)-bimodule. Note that IΣ�(X) ∼= Σ·X is
the free symmetric sequence on X (see also Remark 7.7).

6.8 Symmetric Nlev-operads

Definition 6.20. Let P,Q be (IΣ, IΣ)-bimodules. We define their symmetric composition product,
denoted P�ΣQ, as the (reflexive) coequalizer (calculated in symmetric Nlev-objects)

P�ΣQ := P�IΣQ ∼= colim
(
P�Q P�IΣ�Qoooo

)
where the two maps are induced by the left and right actions actions of IΣ on Q and P.

Note that P�ΣQ inherits left and right IΣ actions by those on P and Q respectively, and so
remains an (IΣ, IΣ)-bimodule. Moreover, IΣ is a two-sided unit for �Σ and symmetric Nlev-objects
equipped with the product (�Σ, IΣ) is a monoidal category.

Remark 6.21. Since IΣ is concentrated at level 1, is it possible to further describe the object
P�ΣQ in terms of its constituent parts. In particular,

(P�ΣQ)` ∼=
∐
k≥0

∐
`1+···+`k=`

Pk⊗̇Σ(Q`1 ◦̂ · · · ◦̂Q`k)

where Pk⊗̇Σ(Q`1 ◦̂ · · · ◦̂Q`k) is obtained as the coequalizer

colim

 Pk⊗̇(Q`1 ◦̂ · · · ◦̂Q`k)
(
Pk⊗̇(IΣ

1 ◦̂ · · · ◦̂IΣ
1︸ ︷︷ ︸

k

)
)
⊗̇(Q`1 ◦̂ · · · ◦̂Q`k)

oo
oo


such that the top is induced by the right action of IΣ on P and the bottom map is induced by the
isomorphism (6.4) and the left action of IΣ on Q.

Definition 6.22. A symmetric Nlev-operad is a reduced symmetric Nlev-object P, which is a
monoid with respect to �Σ. That is, there is a multiplication map ξ : P�ΣP → P and unit map
ε : IΣ → P that satisfy the usual associativity and unitality conditions.
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6.9 Algebras over symmetric Nlev-operads

We now define an algebra over a symmetric Nlev-operad P. Note than algebra over a symmetric
Nlev-operad is a symmetric Nlev-object concentrated at level 0, that is, an IΣ-algebra or symmetric
sequence. As before, given a symmetric Nlev-operad P, let

P�Σ(−) : X 7→ Ev0(P�ΣX̂)

be the associated monad on SymSeq.

Definition 6.23. A symmetric sequence X is an algebra over a symmetric Nlev-operad P if there
is an action map µ : P�Σ(X) → X which is associative and unital (as in Definition 6.16 with �
replaced by �Σ q.v.)

We denote by AlgΣ
lev (P) the category of symmetric P-algebras with P-algebra preserving maps;

for simplicity we will frequently use AlgP instead when there is no room for confusion. We note
that µ consists of maps

µk : Pk⊗̇Σ(X ◦̂k)→ X

where the action of IΣ on X ◦̂k agrees with that for symmetric sequences discussed in Section 2.1.
Furthermore,

µ0 : I ∼= P0⊗̇Σ(X ◦̂0)→ X

gives a unit map for X ∈ AlgP and we note that an algebra X over P will always be reduced, i.e.,
X[0] = ???.

Example 6.24 (Free symmetric P-algebra on a symmetric sequence). Given a symmetric sequence
X, the object P�Σ(X) is the free P-algebra on X and fits into an adjunction

SymSeqC

P�Σ(−)//
AlgP

U
oo

where U is the forgetful functor. In particular, Oper�Σ(X) (see Definition 7.1) is the free operad
on X (see, e.g., [1, 9.4]).

We leave the proof of the following to the reader as it follows from standard arguments as in
[34, 3.29] or [12, 4.3].

Proposition 6.25. If (C,⊗,1) is closed symmetric monoidal which contains all small limits and
colimits, then all small limits and colimits exist in AlgP . Limits and filtered colimits are built in
the underlying category of symmetric sequences and are further reflected by the forgetful functor
U .

General colimits shaped on a small diagram D are constructed by the following (reflexive)
coequalizer (whose colimits are constructed in SymSeq):

colimd∈DXd
∼= colim

(
P�Σ (colimd∈DXd) P�Σ (colimd∈D P�Σ(Xd))oo oo

)
.
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6.10 Modules over P-algebras

Definition 6.26. Let P be a symmetric Nlev-operad andW be a P-algebra. Let M be a symmetric
sequence. We say that M is an W-module if there are maps of the form

η` : P`⊗̇Σ

(
W ◦̂(`−1)◦̂M

)
→M

for ` ≥ 1 that satisfy associativity (6.6) and unitality (6.7). If M is concentrated at level 0 we say
that the object M [0] is a W-algebra.

Set ξ : P�ΣP → P to be the multiplication on P and µ : P�Σ(W)→W the action map on W.
Let ` := `1 + · · · + `k. Associativity and unitality amounts to the commutitivity of the following
diagrams (

Pk⊗̇Σ(P`1 ◦̂ · · · ◦̂P`k)
)
⊗̇Σ

(
W ◦̂(`−1)◦̂M

) ξ`⊗Σid //

∼=
��

P`⊗̇Σ

(
W ◦̂(`−1)◦̂M

)

η`

��

Pk⊗̇Σ

(
(P`1⊗̇ΣW ◦̂`1)◦̂ · · · ◦̂(P`k⊗̇Σ(W ◦̂`k−1◦̂M))

)
id⊗̇Σ(µ`1 ◦̂···◦̂µ`k−1

◦̂η`k )

��

Pk⊗̇Σ

W◦̂ · · · ◦̂W︸ ︷︷ ︸
k−1

◦̂M

 ηk // M,

(6.6)

and

P2⊗̇Σ

(
(P0⊗̇ΣW ◦̂0)◦̂(P1⊗̇ΣM)

) id⊗̇Σ(µ0◦̂η1) //

∼=
��

P2⊗̇Σ(W◦̂M)

η2

��

(
P2⊗̇Σ(P0◦̂P1)

)
⊗̇ΣM

ξ1⊗̇Σid

��
P1⊗̇ΣM

η1 // M.

(6.7)

Recall that µ0 : I ∼= P0⊗̇ΣW ◦̂0 →W is the unit map for W.

Remark 6.27. We encourage the reader to compare the above definition with that of modules over
algebras over an operad, e.g., as in May [45, Definition 3]. In [9, 1.5.1] an example of a 2-colored
operad whose algebras are pairs (A,M) of an O-algebra A along with an A-module M is provided.
The pair (W,M) can be described analogously as an algebra over an N+ := {∗, 0, 1, 2, . . . }-colored
operad with levels, though we will not require such description.

Definition 6.28. We say a map P → Q of (symmetric) Nlev-operads in some symmetric monoidal
model category C is an equivalence if for any p ∈ N◦̂k[t] the induced map Pk(p; t) → Qk(p; t) is
a weak equivalence in C. We write P ' Q if there is a zig-zag of equivalences of (symmetric)
Nlev-operads connecting P and Q.

In the special case that P ' Oper then we say that a P-algebra W is an A∞-operad and that
modules over W are A∞-algebras.
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7 Examples of symmetric Nlev-operads

In this section we describe some examples of symmetric Nlev-operads of interest, specifically the
coendomorphism Nlev-operads on a given cosimplicial symmetric sequence. We begin by describing
Oper – the symmetric Nlev-operad whose algebras are (one-color) operads as some of its properties
will be essential in what is to come. Our eventual goal is to prove that the coendomorphism Nlev-
operad on a Σ-free symmetric sequence X (see Remark 7.7) is indeed a symmetric Nlev-operad;
with the particular example of A = coEnd(Σ·∆•+) in mind (see Section 7.4).

Though we write most of this section for a general closed cocomplete symmetric monoidal
category C, we invite the reader to think particularly of the cases when C = Spt or Top∗.

7.1 The symmetric Nlev-operad Oper

We begin by describing Oper for the category Set of sets.

Definition 7.1. Let Σ denote the symmetric sequence in (Set,×, ∗) with Σ[n] = Σn and define a
reduced Nlev-object as follows. For p ∈ N◦̂k[t] we set

Oper`(p; t) := hom
(

Σ[t],Σ�̊`[p]
)Σt

Remark 7.2. Note there are isomorphisms

Oper`(p; t) = hom
(
Σ[t],Σ◦`[p]

)Σt ∼= hom
(
∗,Σ◦`[p]

) ∼= Σ◦`[p]. (7.1)

Computing some small examples of Oper, we note that

Oper0(∅; 1) ∼= ∗ Oper1(∅;n) ∼= ∅ (n 6= 1)

Oper1(n;n) ∼= Σn (n ≥ 0) Oper1(n;m) ∼= ∅ (n 6= m ≥ 0)

Oper2 (n, (k1, . . . , kn); k) ∼= Σn ×Σp1×···×Σpn
Σk

where p1, . . . , pm denotes the multiplicities of distinct integers among k1, . . . , kn, k =
∑n
i=1 ki, and

Σp1
× · · · × Σpm acts on Σk, e.g., by permutation of block matrices

Σk1
× · · · × Σkn ≤ Σk.

Similarly, let q1, . . . , qr denotes the multiplicities of the distinct integers among t1, . . . , tk and set

p = (n, (k1, . . . , kn), (t1, . . . , tk)) ∈ N◦̂3[t].

Then

Oper3(p; t) ∼= Σn ×Σp1×···×Σpm
Σk ×Σq1×···×Σqr

Σt

Proposition 7.3. Oper is a symmetric Nlev-operad.

Proof. As we will see, Oper is particularly special as the structure maps

ξk,(`1,...,`k) : Operk⊗̇Σ(Oper`1 ◦̂ · · · ◦̂Oper`k)→ Oper` (7.2)



Derivatives of the identity 153

which comprise ξ : Oper�ΣOper → Oper consist of isomorphisms once evaluated at a profile p ∈
N◦̂`[t].

That Oper is symmetric follows from the first part of the proof of Proposition 7.8. The unit
map ε : IΣ → Oper is obtained via the identity morphisms

IΣ
1 (n;n) ∼= Σn → Σn ∼= Oper1(n;n)

and the initial morphism elsewhere. Let us now produce the desired map (7.2) at a profile p ∈ N◦̂`[t].
For the reader who finds the following constructions a bit opaque, we first provide the following

intuition: for ` ≥ 0 let ◦` : SymSeq×` → SymSeq be the functor ◦`(X1, . . . , X`) = X1 ◦ · · · ◦ X`.
Since ◦ is strictly monoidal, there are isomorphisms

Ξk,(`1,··· ,`k) : ◦k (◦`1 , · · · , ◦`k)
∼=−→ ◦`1+···+`k (7.3)

such that ◦• is a nonsymmetric functor-operad (see, e.g., McClure-Smith [48, §4], omitting the
requirement of symmetric group actions). Moreover, the composition maps ξk,(`1,...,`k) are precisely
the morphisms which prescribe the equivariance of the isomorphism Ξk,(`1,...,`k) once evaluated at

a particular string of inputs, given that evaluation at a profile in N◦̂` is the same as evaluating
a symmetric sequence from the left. For instance, ξ3,(2,1,3) provides the isomorphisms (natural in
X1, . . . , X6)

(X1 ◦X2) ◦X3 ◦ (X4 ◦X5 ◦X6) ∼= X1 ◦ · · · ◦X6

and moreover, given p ∈ N◦̂`[t], the desired map ξk,(`1,...,`k)[p] may be thought of a precisely arising
from the isomorphism (

Σ◦`1 ◦ · · · ◦ Σ◦`k
)

[p]
∼=−→ Σ◦`[p].

We describe ξ2,(1,2) first and note the general case follows a similar argument. Let p ∈ N◦̂3[t]
and note that

Oper2⊗̇Σ(Oper1◦̂Oper2))[p] ∼=
∐

p=(n,(p
1
q···qp

n
))

Oper2⊗̇Σ(Oper1◦̂Oper2))[(n, (p
1
, . . . , p

n
))].

Fix p
i
∈ N◦̂2[si] for i = 1, . . . , n such that p = (n, (p1 q · · · q pn)) and set p′ = (n, (s1, . . . , sn)) ∈

N◦̂2[t]. We then observe

(Oper2⊗̇Σ(Oper1◦̂Oper2))[(n, (p
1
, . . . , p

n
))] (7.4)

∼= Σ◦2[p′]×S(p′)

(
Σ[n]× (Σ◦2[p

1
]× · · · × Σ◦2[p

n
]
)

∼= Σ◦3[(n, (p
1
, · · · , p

n
))]

ι−→ Σ◦3[p] ∼= Oper3(p; t)

such that S(p′) = Σn ×
∏
i=1 Σsi and ι is the natural inclusion obtained from the assumption

p = (n, (p
1
q · · · q p

n
)).

The desired map ξ2,(1,2)[p] is induced by the coproduct of composites (7.4) for all p = (n, (p
1
, . . . , p

n
)).

Note further that as sets there is an isomorphism∐
p=(n,(p

1
q···qp

n
))

Σ◦3[(n, (p
1
, · · · , p

n
))] ∼= Σ◦3[p]
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since ◦ is strictly monoidal in the category of symmetric sequences of sets. Thus, ξ2,(1,2)[p] is

invertible and more generally ξk,(`1,...,`k) evaluated at any profile in N◦̂` is also invertible.
Associativity of ξ then follows from the associativity Ξ as in (7.3). That is, for (n, (k1, . . . , kn)) ∈

N◦̂2[k] and for i = 1, . . . , n, q
i

= (ki, (`i,1, · · · , `i,ki)) ∈ N◦̂2[ti] the associativity relation

ξk,(`1,1,··· ,`n,kn ) (ξn,(k1,··· ,kn)⊗̇Σid)

= ξn,(t1,··· ,tn)

(
id⊗̇Σ(ξk1,(`1,1,··· ,`1,k1

)◦̂ · · · ◦̂ξkn,(`n,1,··· ,`n,kn ))
)

evaluated at some p ∈ N◦̂` follows from the commutative square of isomorphisms((
Σ◦`1,1◦ · · · ◦Σ◦`1,k1

)
◦ · · · ◦

(
Σ◦`n,1◦ · · · ◦Σ◦`n,kn

))
[p] //

��

(Σ◦t1◦ · · · ◦Σ◦tn) [p]

��(
Σ◦`1,1◦ · · · ◦Σ◦`n,kn

)
[p] // Σ◦`[p]

Similarly, the unitality condition is satisfied by the more obvious isomorphisms(Σ ◦ · · · ◦ Σ︸ ︷︷ ︸
n

)

 [p] ∼= Σ◦n[p] ∼=

(Σ) ◦ · · · ◦ (Σ)︸ ︷︷ ︸
n

 [p]

for all n ≥ 0 and p ∈ N◦̂1 (i.e., p = p ≥ 0). q.e.d.

Remark 7.4. Let (C,⊗,1) be a closed symmetric monoidal category with finite coproducts. We
write OperC for the image of Oper in C under Σn 7→ Σ[n] ∼=

∐
σ∈Σn

1. That is, given a profile

p ∈ N◦̂k[t] we set

OperC(p; t) = MapC
(
Σ[t],Σ◦k[p]

)Σt
.

Before showing that Oper encodes (one-color) operads as its algebras we first demonstrate an-
other class of symmetric Nlev-operads.

7.2 Coendomorphism symmetric Nlev-operads

Recall as in Section 6 that (C,⊗,1) denotes a closed cocomplete symmetric monoidal category and
Σ is the symmetric sequence in C with Σ[k] =

∐
σ∈Σk

1.

Definition 7.5. Let X ∈ SymSeq∆
C and set coEnd(X ) to be the reduced Nlev-object given at

(p; t) ∈ N◦̂`[t] by

coEnd(X )`(p; t) := Map∆res

(
X [t],X �̊`[p]

)Σt
.

Example 7.6. Unravelling the above definition, coEnd(X )1(k; k) consists of all Σk-equivariant
cosimplicial maps X [k]→ X [k]. Let (q; k) = (n, (k1, . . . , kn); k) ∈ N◦̂2[k] and recall the description
of H(k1, . . . , kn) ≤ Σk from Definition 2.1. Then, coEnd(X )2(q; k) consists of all Σk-equivariant
cosimplicial maps of the form

X [k]→ (X �̊X )[q] ∼= Σ[k]⊗H(k1,...,kn) X [n]�(X [k1]⊗ · · · ⊗ X [kn]).
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Further, coEnd(X ) is quadratic in that it is generated by its first two levels as follows: let

p = (n, (ki)i∈n, (tj)j∈k) and set k :=
∑n
i=1 ki and t :=

∑k
j=1 tj . Then, coEnd(X )3(p; t) consists of

cosimplicial maps ψ that fit into the following Σt-equivariant diagram

X [t]
ψ1 //

ψ ))

(X �̊X )[k, (tj)j∈k]

ψ2�̊id
��

(X �̊X �̊X )[n, (ki)i∈n, (tj)j∈k].

such that ψ2 ∈ coEnd(X )2(n, (k1, . . . , kn); k), i.e., ψ2 : X [k]→ (X �̊X )[n, (k1, . . . , kn)] is Σk-equivariant.
Said differently, there is an isomorphism

coEnd(X )3(p; t) ∼= coEnd(X )2(n, (ki)i∈n; k)⊗Σk coEnd(X )2(k, (tj)j∈k; t)

where Σk acts by shuffling the factors t1, . . . , tk of X2(k, (tj)j∈k; t) in accordance to the Σk equiv-
ariance of maps in X2(n, (ki)i∈n; k). In general, given a profile

p = (n1, (n2
i )i∈n1 , . . . , (n`i)i∈n`−1) ∈ N◦̂`

the object coEnd(X )`(p;n
`) is isomorphic to

coEnd(X )2

(
n1, (n2

i )i∈n1 ;n2
)
⊗Σn2 · · · ⊗Σ

n`−1
coEnd(X )2

(
n`−1, (n`i)i∈n`−1 ;n`

)
. (7.5)

Remark 7.7. We would like to be able to say that coEnd(X ) is a symmetric Nlev-operad for any
cosimplicial symmetric sequence X , however this seems to not be the case. The issue seems to be
based on the potential non-invertibility of θ (as in (5.4)) and similarly how �̊ fails to be a strictly
monoidal product for cosimplicial symmetric sequences. However, there is a class of cosimplicial
symmetric sequences on which we get the desired symmetric Nlev-structure on coEnd(X ).

Let us say that X is Σ-free if there is a sequence {Y[n]}n≥0 of cosimplicial objects in C with

X [n] = Σn·Y[n] ∼= Σ[n]⊗ Y[n]

and such that the Σn action on X [n] is trivial on Y[n] for all n. In such case we write X = Σ·Y.
The benefit for us is that if X is Σ-free, then θ has an inverse (which is constructed in the following
proposition), and so �̊ is a monoidal product when restricted to Σ-free cosimplicial symmetric
sequences.

Proposition 7.8. If X ∈ SymSeq∆
C is Σ-free, then coEnd(X ) is a symmetric Nlev-operad.

Proof. This argument is rather long and somewhat tedious, so we break it up into several steps.
The first step is to show that coEnd(X ) is symmetric, in fact Σ-freeness is not required for this
part.

Let ` ≥ 0. The left action of IΣ on coEnd(X )` is obtained by Σt action on the maps X [t] →
X �̊`[p] which comprise coEnd(X )`. The right action of IΣ◦̂ · · · ◦̂IΣ on coEnd(X )` is obtained, e.g.,
, at ` = 2 as follows. For a profile q = (n, (k1, · · · , kn)), we observe

(IΣ◦̂IΣ)(q; k) ∼= Σn n (Σk1
× · · · × Σkn) ≤ Σk
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acts via the Σk-equivariance of

X [k]→ Σ[k]⊗H(k1,...,kn) X [n]�(X [k1]⊗ · · · ⊗ X [kn]).

The general case follows a similar argument.
Second, we produce a multiplication map

ξ : coEnd(X )�ΣcoEnd(X )→ coEnd(X ).

Two ingredients are crucial to this step. First, is the existence of maps

µ`1,...,`k : X �̊`1�̊ · · · �̊X �̊`k → X �̊` (7.6)

for each tuple `1, . . . , `k such that `1 + · · ·+ `k = ` which are inverse to the induced map by θ (see
(5.4)). It is this step for which Σ-freeness of X seems essential and such maps µ are granted by
utilizing the structure of Oper. Write X = Σ·Y and for p = (n1, · · · , (nki )i∈nk−1) set

Y�k[p] = Y[n1]�

(⊗
i∈n1

Y[n2
i ]

)
� · · ·�

 ⊗
i∈nk−1

Y[nki ]

 .

Note in the above, we are utilizing the box product for C∆ which is strictly monoidal.

For simplicity we describe the map µ1,2 : X �̊(X �̊X ) → X �̊3 and note the general case follows

from a similar argument . Note that X �̊(X �̊X ) takes as inputs profiles of the form (n, (p1, · · · , pn))

for some unordered list of profiles pi ∈ N◦̂2.
Fix a specific profile (n, (p1q· · ·qpn)) = p and for i = 1, . . . , n, write pi = (ki, (ti,1, · · · , ti,ki)) ∈

N◦̂2[ti]. There is an inclusion induced as follows

X �̊(X �̊X ))[n, (p1, · · · , pn)] (7.7)

∼= (Σ[n]⊗ Y[n])�
((

Σ◦2[p1]⊗ Y�2[p1]
)
⊗ · · · ⊗

(
Σ◦2[pn]⊗ Y�2[pn]

))
∼=

Σ[n]⊗Σn

(∐
†

Σ[t]⊗Σt1×···×Σtn
Σ◦2[p1]× · · · ×Σ◦2[pn]

)⊗ Y�3[p]

∼= Σ◦3[n, (p1, · · · , pn)]⊗ Y�3[p]
(∗)−−→ Σ◦3[p]⊗ Y�3[p] ∼= X �̊3[p]

where † runs over all Σn permutations of t1, · · · , tn and (∗) is induced by the natural inclusion
ι : Σ◦3[n, (p1, · · · , pn)] → Σ◦3[p]. Moreover, the map µ1,2 at profile p is then induced from the
inclusion described above via the isomorphism(

X �̊(X �̊X )
)

[p] ∼=
∐

(n,(p1q···qpn))=p

(
X �̊(X �̊X )

)[
n, (p1, . . . , pn)

]
.

A straightforward computation then shows that µ1,2 is inverse to θ.
The second ingredient to producing ξ is a map

coEnd(X )`1 ◦̂ · · · ◦̂ coEnd(X )`k
Γ−−→ Map∆res

(
X �̊k,X �̊`1�̊ · · · �̊X �̊`k

)Σ

(7.8)
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which we construct as follows. Let αi : X → X �̊`i for i = 1, . . . , k. The map Γ is induced by the
assignment (α1, . . . , αk) 7→ α1�̊ · · · �̊αk, where, e.g., if k = 2 and p = (n, (t1, · · · , tn)) ∈ N◦̂2[t] then

(α1�̊α2)[p] : X �̊2[p]→ (X `1�̊X `2)[p]

is obtained levelwise by the maps α1[n] : X [n]→ X �̊`1 [n] and α2[ti] : X �̊`2 [ti] for i = 1, . . . , n.
With these two ingredients in place, the composition ξ is obtained via the composition

Map∆res

(
X ,X �̊k

)Σ

⊗̇Σ

(
Map∆res

(
X ,X �̊`1

)Σ

◦̂ · · · ◦̂Map∆res

(
X ,X �̊`k

)Σ
)

id⊗̇ΣΓ−−−−→ Map∆res

(
X ,X �̊k

)Σ

⊗̇Σ Map∆res

(
X �̊k,X �̊`1�̊ · · · �̊X �̊`k

)Σ

comp.−−−−→ Map∆res

(
X ,X �̊`1�̊ · · · �̊X �̊`k

)Σ

(µ`1,...,`k )∗−−−−−−−→ Map∆res

(
X ,X �̊`

)Σ

.

Fortunately, the unit map is simpler to describe. We obtain ε : IΣ → coEnd(X ) as the morphism

Σ[n]→ Map∆res(X [n],X [n])Σn

adjoint to the action map Σ[n]⊗X [n]→ X [n] which expresses the Σn equivariance of X [n].
Showing that ξ and ε satisfy the appropriate associativity and unitality conditions is a tedious

though ultimately straightforward and may be adapted from the (somewhat simpler) proof of
Proposition 5.8 found in Section 8.1. q.e.d.

7.3 Oper-algebras are operads

Our aim is now to show that Oper-algebras indeed model (one-color) operads.

Proposition 7.9. There is an equivalence of categories between algebras over OperC and operads
in C.

Proof. We show that a symmetric Oper-algebra is necessarily an operad and note that the argument
is readily reversed to show the converse statement. Suppose W is a symmetric Oper-algebra. Note,
Oper2⊗̇ΣW ◦̂2 →W consists of maps

Oper2(n, (k1, . . . , kn); k)⊗̇Σ (W[n]⊗W[k1]⊗ · · · ⊗W[kn])→W[k] (7.9)

for each p = (n, (k1, . . . , kn)) ∈ N◦̂2. Fix such a profile p and let p1, . . . , pm be the multiplicities

of the distinct factors d1, . . . , dm among k1, . . . , kn. Coequalizing the actions of IΣ identifies the
symmetric group actions (resp. with ki replacing n)

Σ[n]⊗W[n]→W[n]

with the right action of IΣ given in the proof of Proposition 7.8. Thus, (7.9) yields Σk-equivariant
map of the form

Σ[k]⊗H(k1,...,kn)W[n]⊗W[k1]⊗ · · · ⊗W[kn]→W[k] (7.10)
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which moreover obeys the correct equivariance, e.g., as described in May [45]. Said differently,
(7.10) is the factor (W◦W)[n, (k1, . . . , kn)] (as in Definition 2.2) and the collection of all such maps
then pieces together to form

m : W ◦W →W.

Since W ∈ AlgOper there is a commutative diagram of the form

(
Oper2⊗̇Σ(Oper1◦̂Oper2)

)
⊗̇Σ(W ◦̂3)

∼= //

ξ2,(1,2)⊗̇Σid

��

Oper2⊗̇Σ

(
(Oper1⊗̇Σ(W))◦̂(Oper2⊗̇Σ(W ◦̂2))

)
id⊗̇Σ(µ1◦̂µ2)

��
Oper2⊗̇Σ(W◦̂W)

µ2

��
Oper3⊗̇Σ(W ◦̂3)

µ3 // W.

The composite of the right side maps describes

W ◦ (W ◦W)
id◦m−−−−→W ◦W m−−→W

and by construction the bottom map describes

(W ◦W) ◦W m◦id−−−−→W ◦W m−−→W.

Associativity of m follows as ξ2,(1,2) is an isomorphism.
To produce the unit u : I →W we first recall that

µ0 : I ∼= P0⊗̇Σ(W ◦̂0)→W

provides the unit map u on W. There is then a commuting diagram

Oper2⊗̇Σ

(
(Oper0⊗̇Σ(W ◦̂0))◦̂(Oper1⊗̇Σ(W))

)id⊗̇Σ(µ0◦̂µ1) //

∼=
��

Oper2⊗̇Σ(W◦̂W)

µ2

��

(
Oper2⊗̇Σ(Oper0◦̂Oper1)

)
⊗̇Σ(W)

ξ1⊗̇Σid

��
Oper1⊗̇Σ(W)

µ1 // W

the composite of top and right arrows of which results in

I ◦W u◦id−−−→W ◦W m−−→W

and the left and bottom arrows are all isomorphisms. Commutativity of the other unitality diagram
follows a similar analysis. q.e.d.
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Corollary 7.10. Let W be an operad, i.e., Oper-algebra. Let M ∈ C and denote by M̄ the
symmetric sequence concentrated at level 0 with M̄ [0] = M . Then, M is an W-algebra (in the
sense of Definition 6.26) if and only if M is an W-algebra in the classic sense.

Proof. As in Definition 6.26, a W-algebra consists of maps

Oper`⊗̇Σ(W ◦̂(`−1)◦̂M̄)→ M̄.

Note, since M̄ is concentrated at 0, the only nontrivial contributors to such maps will have
profiles which end in a string of 0. In particular, for ` = 2 there are maps of the form

Oper2(n, (0, . . . , 0); 0)⊗̇Σ

(
W[n]⊗M⊗n

)
→M.

Since Oper2(n, (0, . . . , 0); 0) ∼= Σ[0] ∼= 1, the above maps descends to

W[n]⊗Σn M
⊗n →M

after coequalizing. Associativity and unitality follow a similar argument as the proof of Proposition
7.9. q.e.d.

Remark 7.11. Though our description of Oper is new, descriptions of an N-colored operad whose
algebras are operads is not new. Berger-Moerdijk describe an N-colored operad MOp in terms
of trees whose algebras are operads in [9, 1.5.6] (see also Dehling-Vallette [24]). Applying the
forgetful functor U from Section 6.6 to Oper yields an isomorphic N-colored operad to that of
Berger-Moerdijk, i.e., UOper ∼=MOp.

7.4 A model for A∞-operads

We will now focus on a particular coendomorphism Nlev-operad in Top, namely that on the cosim-
plicial symmetric sequence Σ·∆• with Σ·∆•[n] = Σn·∆•.

Proposition 7.12. There is an equivalence of Nlev-operads coEnd(Σ·∆•)→ OperTop.

Proof. Note that equivalences of Nlev-operads are computed levelwise (Definition 6.28) and that a

morphism f : X → Y of cosimplicial objects in Top induces a map (Σ·X)�̊k → (Σ·Y )�̊k for k ≥ 1.
If additionally there is a retract r : Y → X of f there is a map coEnd(Σ·X) → coEnd(Σ·Y ) on
coendomorphism operads induced by post-composition with f and pre-composition with r.

Since there are morphisms ∗ ∼−→ ∆n ∼−→ ∗ for all n ≥ 0 (i.e., by inclusion at a vertex) we then
have

Map∆res

(
Σ·∆•, (Σ·∆•)�̊k

)Σ (†)−−→ Map∆res

(
Σ·∗, (Σ·∗)�̊k

)Σ ∼= Map
(
Σ,Σ◦k

)Σ
for all k ≥ 0, where ∗ denotes the constant cosimplicial object on ∗ ∈ Top. Moreover, since
∗ → ∆n → ∗ consists of weak equivalences between fibrant and cofibrant objects for all n, the
indicated map (†) is a weak equivalence in Top. q.e.d.

Note that for p ∈ N◦̂k[t], OperTopk (p; t) is just the discrete space Σ◦k[p]. Similarly, OperTop∗ ∼=
OperTop+ will encode operads in (Top∗,∧, S0) and thus also in Spt via the tensoring of Spt over Top∗.
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Remark 7.13. Note the functor (−)+ : (Top,×, ∗)→ (Top∗,∧, S0) which adds a disjoint basepoint
induces isomorphisms of pointed spaces

Map
Top∗
∆res

(
Σ·∆•+, (Σ·∆•+)�̊k

)Σ ∼= MapTop
∆res

(
Σ·∆•, (Σ·∆•)�̊k

)Σ

+
.

Thus, there is an isomorphism

coEnd(Σ·∆•+) ∼= coEnd(Σ·∆•)+

of Nlev-operads in Top∗. For ease of notation we write A for this Nlev-operad and note that
Proposition 7.12 provides a map ρ : A ∼−→ OperTop∗ , i.e., A is a suitably “fattened-up” version of
Oper which will encode A∞-operads as its algebras, similar to A encoding A∞-monoids in Example
5.4.

8 A∞-operad structure on the derivatives of IdAlgO
The aim of this final section is to prove Theorem 1.1. We begin by proving Proposition 5.8 which
as a corollary provides a proof of the Theorem 1.1(a). In Section 8.2 we prove Theorem 1.1(b).

8.1 Proof of Theorem 1.1(a)

Since C(O) is a �̊-monoid (see Proposition 5.7), Theorem 1.1(a) will follow from Proposition 5.8,
which we prove below.

Proof of Proposition 5.8. Let X be a �̊-monoid in SymSeq∆
Spt whose multiplication we denote by

m : X �̊X → X . We aim to show that TotX is an algebra over A. We define maps λ` as follows
(note the notation ∧̇ as ⊗̇ from Definition 6.12 for the monoidal category (Spt,∧, S))

λ` : A`∧̇Σ(TotX )◦̂` → TotX

For simplicity we first describe the ` = 2 case. Let p = (n, (k1, . . . , kn)) ∈ N◦̂2[k]. Let ψ ∈
A2(p; t), and let α, β : Σ·∆•+ → X be maps of cosimplicial symmetric sequences. Define γ at level
k by the composite

(Σ·∆•+)�̊2[n, (k1, . . . , kn)]
α[n]�̊β[k1,...,kn]// (X �̊2)[n, (k1, . . . , kn)]

m∗

��
(Σ·∆•+)[k]

ψ[k]

OO

γ[k] // X [k]

where α[n]�̊β[k1, . . . , kn] is provided via the map Γ from (7.8), the construction of which may be
readily altered to give a map

Γ:
(

MapSpt
∆res

(
Σ·∆•+,X

)Σ)◦̂` → MapSpt
∆res

(
(Σ·∆•+)�̊`,X �̊`

)Σ

.
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In general, λ` is given by the following composite (compare with [2, (1.13)])

Map
Top∗
∆res

(
Σ·∆•+, (Σ·∆•+)�̊`

)Σ

∧̇Σ

(
MapSpt

∆res

(
Σ·∆•+,X

)Σ)◦̂`
id∧̇ΣΓ−−−−→ Map

Top∗
∆res

(
Σ·∆•+, (Σ·∆•+)�̊`

)Σ

∧̇Σ MapSpt
∆res

(
(Σ·∆•+)�̊`,X �̊`

)Σ

compose−−−−−→ MapSpt
∆res

(
Σ·∆•+,X �̊`

)Σ

m∗−−→ MapSpt
∆res

(
Σ·∆•+,X

)Σ
where the composition map is adjoint to the composite of evaluation maps

Σ·∆•+ ∧Map
Top∗
∆res (Σ·∆•+, (Σ·∆•+)�̊`)Σ → (Σ·∆•)�̊`+ , (8.1)

(Σ·∆•+)�̊`∧̇Σ MapSpt
∆res((Σ·∆•+)�̊`,X �̊`)Σ → X �̊`.

and m∗ is induced by the �̊-monoid structure on X .
To show that λ is associative we consider the following diagram, with ψ′ ∈ An, ψi ∈ Aki for

i = 1, . . . , n such that the composite ξ(ψ′;ψ1, . . . , ψn) = ψ ∈ Ak.

(Σ·∆•+)�̊k // X �̊k

θ∗xx

m∗

xx

(Σ·∆•+)�̊k1�̊ · · · �̊(Σ·∆•+)�̊kn

µk1,...,kn

55

// X �̊k1�̊ · · · �̊X �̊kn

m∗�̊···�̊m∗
��

(Σ·∆•+)�̊n

ψ1�̊···�̊ψn

OO

// X �̊ · · · �̊X

m∗

��
Σ·∆•+

ψ′

OO

γ′ ,,

γ

22

ψ

KK

X

Note here that m∗ is induced by repeatedly applying the pairing m : X �̊X → X from the left, i.e.,

X �̊X �̊ · · · �̊X m�̊id�̊···�̊id−−−−−−−−→ · · · m�̊id�̊id−−−−−−→ X �̊X �̊X m�̊id−−−→ X �̊X m−→ X .

The dashed morphisms γ and γ′ are induced, respectively, by λkξn,(k1,...,kn) and λn(id⊗̇Σ(λk1
◦̂ · · · ◦̂λkn).

Note as well that µk1,...,kn is as in the proof of Proposition 7.8, and θ∗ is the grouping map induced
by θ (see Section 5.5), by which it follows that γ and γ′ must agree.

For unitality we recall that ε : IΣ → A is induced by the inclusion at id∆ and therefore the
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composite λ1[n]ε[n] in the following diagram

A1(n;n) ∧Σn MapSpt
∆res

(
Σ·∆•+[n],X [n]

)Σn λ1[n] // MapSpt
∆res

(
Σ·∆•+[n],X [n]

)Σn

(Σn)+ ∧Σn MapSpt
∆res

(
Σ·∆•+[n],X [n]

)Σn
ε[n]

OO

∼=

33

is given by S0 ∧ TotX [n]
∼=−→ TotX [n]. q.e.d.

8.2 An equivalence of A∞-operads between O and ∂∗IdAlgO
We now show that the induced operad structure on ∂∗IdAlgO from Proposition 5.8 agrees with the

induced A-algebra structure on O, thus proving Theorem 1.1(b). Let ρ : A ∼−→ Oper be the map
described in Remark 7.13 and note an operad O ∈ AlgOper is in algebra over A via the forgetful
functor ρ∗.

Proof of Theorem 1.1(b). By equivalence of A∞-operads we mean equivalence of A-algebras which
restricts to an equivalence of underlying symmetric sequences.

Recall there is a natural coaugmentation O → C(O) via O → J . We have shown in Section 4.4
that the coface k-cubes associated to

O → C(O) and ∂∗IdAlgO → holim∆≤n−1 ∂∗((UQ)•+1)

are equivalent. Denoting these k-cubes by Xk and Yk, respectively, we note for k ≥ n ≥ 1 that as
Yk[n] is homotopy cartesian so is Xk[n]. That is to say, for all n ≥ 1

O[n]
∼−→ holim∆(C(O)[n]).

Let O be the constant cosimplicial object in SymSeq on O. From the above, the coaugmentation
O → C(O) induces a map of cosimplicial symmetric sequences ϕ : O → C(O) such that TotO ∼−→
TotC(O). Moreover, O inherits a natural �̊-monoid structure induced by the operad structure
maps O ◦ O → O and I → O, and ϕ respects this structure (i.e., is a map of �̊-monoids).

For each n ≥ 0 we have

MapSpt
∆res(Σn·∆•+,O[n])Σn ∼−→MapSpt

∆res(Σn·∆0
+,O[n])Σn

∼= MapSpt(Σn·S0,O[n])Σn ∼= MapSpt(S0,O[n]) ∼= O[n].

and therefore, TotO ∼−→ O. Thus, there are commuting diagrams for all n ≥ 0

An⊗̇Σ(ρ∗O)◦̂n

��

An⊗̇Σ(TotO)◦̂n

��

//oo An⊗̇Σ(TotC(O))◦̂n

��
ρ∗O TotO ∼ //∼oo TotC(O)

(8.2)

where the left is the A-algebra structure map on ρ∗O (which must factor through Oper) and the
right is the A-algebra structure map on ∂∗IdAlgO . q.e.d.
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8.3 A class of ∂∗IdAlgO -algebras

Though it will follow abstractly from Theorem 8.2, the following corollary show that it is possible to
describe an action of ∂∗IdAlgO explicitly on the TQ-completion of sufficiently connected O-algebras.
Recall that X ' X∧TQ for 0-connected X ∈ AlgO.

Corollary 8.1. Any 0-connected O-algebra X is weakly equivalent to an algebra over ∂∗IdAlgO
via X 7→ X∧TQ.

Proof. A straightforward modification of the proof of Proposition 5.7 permits a well-defined map
of cosimplicial diagrams

r : C(O)�̊C(X)→ C(X)

which endows C(X) with the structure of a left module over C(O). Strictly speaking we do need
to be careful here, as C(O) is not a strict monoid, so the module structure is obtained by replacing
the right-most instances of C(O) with C(X) in (5.5) and (5.6). Nonetheless, a straightforward
adaptation of the proof of Proposition 5.8 demonstrates maps

A`⊗̇Σ

(
(TotC(O))◦̂(`−1)◦̂X̄∧TQ

)
→ X̄∧TQ

where X̄∧TQ is the symmetric sequence concentrated at level 0 with value X∧TQ, as required of
Definition 6.26. q.e.d.

Remark 8.2. One intent of the above is to motivate the analogous statement for algebras over the
derivatives of the identity in spaces, which a priori seems a bit more mysterious. Using the model
∂∗IdTop∗ = holim∆ C(S) (see Remark 4.1) we further show in [21] that for any S-coalgebra Y in
spectra (e.g., Y = Σ∞X) the derived primitives PrimS(Y ) inherits the structure of an algebra over

∂∗IdTop∗ via a pairing of cosimplicial objects with respect to �̊ (see also [15], [38], [8]).
In this framework, Corollary 8.1 tells us that any 0-connected X ∈ AlgO is equivalent to its

derived primitives PrimB(O)(TQ(X)) (with respect to a suitable coalgebra structure on B(O), see
Section 4.3) as ∂∗IdAlgO ' O-algebras. Note also that PrimB(O)(TQ(X)) ' X∧TQ. As such, one
possible future avenue for our work is to try to push this result to work for any nilpotent O-
algebra. This could potentially be used to prove that any nilpotent O-algebra is equivalent to its
TQ-completion (see also [10], [51], and further compare with [13], [4], [14], [11] that any nilpotent
space is equivalent to its completion with respect to Ω∞Σ∞).
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